J 2012

Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples

JIANG, LY, B AIGRET, Borggraeve WM DE, Zdeněk SPÁČIL, LL ILAG et. al.

Základní údaje

Originální název

Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples

Autoři

JIANG, LY, B AIGRET, Borggraeve WM DE, Zdeněk SPÁČIL a LL ILAG

Vydání

Analytical and Bioanalytical chemistry, HEIDELBERG, SPRINGER HEIDELBERG, 2012, 1618-2642

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 3.659

DOI

http://dx.doi.org/10.1007/s00216-012-5966-y

UT WoS

000304166500023

Klíčová slova anglicky

ALS; Cyanobacteria; beta-amino-N-methylalanine (BAMA); AEG; DAB
Změněno: 29. 9. 2017 14:00, PharmDr. Zdeněk Spáčil, Ph.D.

Anotace

V originále

Algal blooms are well-known sources of acute toxic agents that can be lethal to aquatic organisms. However, one such toxin, beta--methylamino--alanine (BMAA) is also believed to cause amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. The detection and identification of BMAA in natural samples were challenging until the recent introduction of reliable methods. However, the issue of potential interference from unknown isomers of BMAA present in samples has not yet been thoroughly investigated. Based on a systematic database search, we generated a list of all theoretical BMAA structural isomers, which was subsequently narrowed down to seven possible interfering compounds for further consideration. The seven possible candidates satisfied the requirements of chemical stability and also shared important structural domains with BMAA. Two of the candidates, 2,4-diaminobutyric acid (DAB) and -(2-aminoethyl) glycine (AEG) have recently been studied in the context of BMAA. A further isomer, beta-amino--methyl-alanine (BAMA), has to be considered because it can potentially yield the fragment ion, which is diagnostic for BMAA. Here, we report the synthesis and analysis of BAMA, together with AEG, DAB, and other isomers that are of interest in the separation and detection of BMAA in biological samples by using either high-performance liquid chromatography or ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. We detected for the first time BAMA in blue mussel and oyster samples. This work extends the previously developed liquid chromatography-tandem mass spectrometry platform Spacil et al. (Analyst 135:127, 2010) to allow BMAA isomers to be distinguished, improving the detection and identification of this important amino acid.
Zobrazeno: 17. 11. 2024 13:05