D 2018

FO model checking of geometric graphs

HLINĚNÝ, Petr, Filip POKRÝVKA and Bodhayan ROY

Basic information

Original name

FO model checking of geometric graphs

Authors

HLINĚNÝ, Petr (203 Czech Republic, guarantor, belonging to the institution), Filip POKRÝVKA (703 Slovakia, belonging to the institution) and Bodhayan ROY (356 India, belonging to the institution)

Edition

LIPIcs 89. Dagstuhl, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017), p. "19:1"-"19:12", 12 pp. 2018

Publisher

Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

RIV identification code

RIV/00216224:14330/18:00100734

Organization unit

Faculty of Informatics

ISBN

978-3-95977-051-4

ISSN

Keywords in English

first-order logic; model checking; fixed-parameter tractability; intersection graphs; visibility graphs

Tags

International impact, Reviewed
Změněno: 14/6/2022 12:12, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Over the past two decades the main focus of research into first-order (FO) model checking algorithms has been on sparse relational structures – culminating in the FPT algorithm by Grohe, Kreutzer and Siebertz for FO model checking of nowhere dense classes of graphs. On contrary to that, except the case of locally bounded clique-width only little is currently known about FO model checking of dense classes of graphs or other structures. We study the FO model checking problem for dense graph classes definable by geometric means (intersection and visibility graphs). We obtain new nontrivial FPT results, e.g., for restricted subclasses of circular-arc, circle, box, disk, and polygon-visibility graphs. These results use the FPT algorithm by Gajarský et al. for FO model checking of posets of bounded width. We also complement the tractability results by related hardness reductions.

Links

GA17-00837S, research and development project
Name: Strukturální vlastnosti, parametrizovaná řešitelnost a těžkost v kombinatorických problémech
Investor: Czech Science Foundation
MUNI/A/0897/2016, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace VI.
Investor: Masaryk University, Category A
MUNI/A/0992/2016, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A