J 2017

Parkinson disease detection from speech articulation neuromechanics

GOMÉZ-VILDA, Pedro, Jiri MEKYSKA, José M. FERRÁNDEZ, Daniel PALACIOS-ALONSO, Andrés GÓMEZ-RODELLAR et. al.

Basic information

Original name

Parkinson disease detection from speech articulation neuromechanics

Authors

GOMÉZ-VILDA, Pedro (724 Spain), Jiri MEKYSKA (203 Czech Republic), José M. FERRÁNDEZ (170 Colombia), Daniel PALACIOS-ALONSO (724 Spain), Andrés GÓMEZ-RODELLAR (724 Spain), Victoria RODELLAR-BIARGE (724 Spain), Zoltan GALAZ (203 Czech Republic), Zdenek SMEKAL (203 Czech Republic), Ilona ELIÁŠOVÁ (203 Czech Republic, belonging to the institution), Milena KOŠŤÁLOVÁ (203 Czech Republic, belonging to the institution) and Irena REKTOROVÁ (203 Czech Republic, guarantor, belonging to the institution)

Edition

Frontiers in Neuroinformatics, Lausanne, Frontiers Media SA, 2017, 1662-5196

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

30103 Neurosciences

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 3.074

RIV identification code

RIV/00216224:14110/17:00095677

Organization unit

Faculty of Medicine

UT WoS

000408537700001

Keywords in English

Aging voice; Hypokinetic dysarthria ;Neurologic disease; Parkinson disease; Random least squares feed-forward networks; Speech neuromotor activity

Tags

Tags

International impact, Reviewed
Změněno: 18/3/2018 20:31, Mgr. Pavla Foltynová, Ph.D.

Abstract

V originále

Aim: The research described is intended to give a description of articulation dynamics as a correlate of the kinematic behavior of the jaw-tongue biomechanical system, encoded as a probability distribution of an absolute joint velocity. This distribution may be used in detecting and grading speech from patients affected by neurodegenerative illnesses, as Parkinson Disease. Hypothesis: The work hypothesis is that the probability density function of the absolute joint velocity includes information on the stability of phonation when applied to sustained vowels, as well as on fluency if applied to connected speech. Methods: A dataset of sustained vowels recorded from Parkinson Disease patients is contrasted with similar recordings from normative subjects. The probability distribution of the absolute kinematic velocity of the jaw-tongue system is extracted from each utterance. A Random Least Squares Feed-Forward Network (RLSFN) has been used as a binary classifier working on the pathological and normative datasets in a leave-one-out strategy. Monte Carlo simulations have been conducted to estimate the influence of the stochastic nature of the classifier. Two datasets for each gender were tested (males and females) including 26 normative and 53 pathological subjects in the male set, and 25 normative and 38 pathological in the female set. Results: Male and female data subsets were tested in single runs, yielding equal error rates under 0.6% (Accuracy over 99.4%). Due to the stochastic nature of each experiment, Monte Carlo runs were conducted to test the reliability of the methodology. The average detection results after 200 Montecarlo runs of a 200 hyperplane hidden layer RLSFN are given in terms of Sensitivity (males: 0.9946, females: 0.9942), Specificity (males: 0.9944, females: 0.9941) and Accuracy (males: 0.9945, females: 0.9942). The area under the ROC curve is 0.9947 (males) and 0.9945 (females). The equal error rate is 0.0054 (males) and 0.0057 (females). Conclusions: The proposed methodology avails that the use of highly normalized descriptors as the probability distribution of kinematic variables of vowel articulation stability, which has some interesting properties in terms of information theory, boosts the potential of simple yet powerful classifiers in producing quite acceptable detection results in Parkinson Disease.

Links

NV16-30805A, research and development project
Name: Efekt neinvazivní stimulace mozku na hypokinetickou dysartrii, mikrografii a mozkovou plasticitu u pacientů s Parkinsonovou nemocí