Detailed Information on Publication Record
2017
Odd Scalar Curvature in Batalin-Vilkovisky Geometry
BERING LARSEN, KlausBasic information
Original name
Odd Scalar Curvature in Batalin-Vilkovisky Geometry
Authors
Edition
Brno, Czech Republic, 36 pp. 2017
Publisher
Habilitation thesis, Masaryk University
Other information
Language
English
Type of outcome
Odborná kniha
Field of Study
10303 Particles and field physics
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
Organization unit
Faculty of Science
Keywords in English
Supermathematics; Supermanifolds; Odd Poisson Geometry; Darboux Theorem; Antibracket; Batalin-Vilkovisky Geometry; Curvature;
Tags
Změněno: 17/3/2019 16:22, doc. Klaus Bering Larsen, Ph.D.
Abstract
V originále
After a brief introduction to Batalin-Vilkovisky (BV) formalism, we treat aspects of supermathematics in algebra and differential geometry, such as, stratification theorems, Frobenius theorem and Darboux theorem on supermanifolds. We use Weinstein's splitting principle to prove Darboux theorem for regular, possible degenerate, even and odd Poisson supermanifolds. Khudaverdian's nilpotent operator (which takes semidensities into semidensities of opposite Grassmann-parity) is introduced on both (i) an atlas of Darboux coordinates and (ii) in arbitrary coordinates. An odd scalar function is defined and it is shown that it has a geometric interpretation as an odd scalar curvature.
Links
GBP201/12/G028, research and development project |
|