GÁL, Břetislav, Miroslav VESELÝ, Jana COLLAKOVA, Marta NEKULOVA, Veronika JUZOVA, Radim CHMELIK and Pavel VESELÝ. Distinctive behaviour of live biopsy-derived carcinoma cells unveiled using coherence-controlled holographic microscopy. Plos one. San Francisco: Public Library of Science, 2017, vol. 12, No 8, p. 1-14. ISSN 1932-6203. Available from: https://dx.doi.org/10.1371/journal.pone.0183399.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Distinctive behaviour of live biopsy-derived carcinoma cells unveiled using coherence-controlled holographic microscopy
Authors GÁL, Břetislav, Miroslav VESELÝ, Jana COLLAKOVA, Marta NEKULOVA, Veronika JUZOVA, Radim CHMELIK and Pavel VESELÝ.
Edition Plos one, San Francisco, Public Library of Science, 2017, 1932-6203.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 30206 Otorhinolaryngology
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 2.766
Organization unit Faculty of Medicine
Doi http://dx.doi.org/10.1371/journal.pone.0183399
UT WoS 000408438600028
Keywords in English cancer; head; neck
Tags EL OK
Tags International impact, Reviewed
Changed by Changed by: Soňa Böhmová, učo 232884. Changed: 20/3/2018 13:05.
Abstract
Head and neck squamous cell carcinoma is one of the most aggressive tumours and is typically diagnosed too late. Late diagnosis requires an urgent decision on an effective therapy. An individualized test of chemosensitivity should quickly indicate the suitability of chemotherapy and radiotherapy. No ex vivo chemosensitivity assessment developed thus far has become a part of general clinical practice. Therefore, we attempted to explore the new technique of coherence-controlled holographic microscopy to investigate the motility and growth of live cells from a head and neck squamous cell carcinoma biopsy. We expected to reveal behavioural patterns characteristic for malignant cells that can be used to imrove future predictive evaluation of chemotherapy. We managed to cultivate primary SACR2 carcinoma cells from head and neck squamous cell carcinoma biopsy verified through histopathology. The cells grew as a cohesive sheet of suspected carcinoma origin, and western blots showed positivity for the tumour marker p63 confirming cancerous origin. Unlike the roundish colonies of the established FaDu carcinoma cell line, the SACR2 cells formed irregularly shaped colonies, eliciting the impression of the collective invasion of carcinoma cells. Time-lapse recordings of the cohesive sheet activity revealed the rapid migration and high plasticity of these epithelial-like cells. Individual cells frequently abandoned the swiftly migrating crowd by moving aside and crawling faster. The increasing mass of fast migrating epithelial-like cells before and after mitosis confirmed the continuation of the cell cycle. In immunofluorescence, analogously shaped cells expressed the p63 tumour marker, considered proof of their origin from a carcinoma. These behavioural traits indicate the feasible identification of carcinoma cells in culture according to the proposed concept of the carcinoma cell dynamic phenotype. If further developed, this approach could later serve in a new functional online analysis of reactions of carcinoma cells to therapy. Such efforts conform to current trends in precision medicine.
PrintDisplayed: 23/7/2024 13:00