J 2017

A Projective-to-Conformal Fefferman-Type Construction

HAMMERL, Matthias, Katja SAGERSCHNIG, Josef ŠILHAN, Arman TAGHAVI-CHABERT, Vojtěch ŽÁDNÍK et. al.

Basic information

Original name

A Projective-to-Conformal Fefferman-Type Construction

Authors

HAMMERL, Matthias (40 Austria), Katja SAGERSCHNIG (40 Austria), Josef ŠILHAN (203 Czech Republic, belonging to the institution), Arman TAGHAVI-CHABERT (250 France, belonging to the institution) and Vojtěch ŽÁDNÍK (203 Czech Republic, belonging to the institution)

Edition

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2017, 1815-0659

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Ukraine

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.100

RIV identification code

RIV/00216224:14310/17:00095269

Organization unit

Faculty of Science

UT WoS

000414168700001

Keywords in English

parabolic geometry; projective structure; conformal structure; Cartan connection; Fefferman spaces; twistor spinors

Tags

Tags

International impact, Reviewed
Změněno: 27/3/2018 16:45, Ing. Nicole Zrilić

Abstract

V originále

We study a Fefferman-type construction based on the inclusion of Lie groups SL(n + 1) into Spin(n + 1, n + 1). The construction associates a split-signature (n, n)-conformal spin structure to a projective structure of dimension n. We prove the existence of a canonical pure twistor spinor and a light-like conformal Killing field on the constructed conformal space. We obtain a complete characterisation of the constructed conformal spaces in terms of these solutions to overdetermined equations and an integrability condition on the Weyl curvature. The Fefferman-type construction presented here can be understood as an alternative approach to study a conformal version of classical Patterson-Walker metrics as discussed in recent works by Dunajski-Tod and by the authors. The present work therefore gives a complete exposition of conformal Patterson-Walker metrics from the viewpoint of parabolic geometry.

Links

GA201/08/0397, research and development project
Name: Algebraické metody v geometrii a topologii
Investor: Czech Science Foundation, Algebraic methods in geometry and topology
GBP201/12/G028, research and development project
Name: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku
Investor: Czech Science Foundation
GP14-27885P, research and development project
Name: Skoro izotropní struktury v pseudo-riemannovské geometrii
Investor: Czech Science Foundation