D 2017

KernelTagger – a PoS Tagger for Very Small Amount of Training Data

RYCHLÝ, Pavel

Basic information

Original name

KernelTagger – a PoS Tagger for Very Small Amount of Training Data

Authors

RYCHLÝ, Pavel (203 Czech Republic, guarantor, belonging to the institution)

Edition

Brno, Proceedings of the Eleventh Workshop on Recent Advances in Slavonic Natural Language Processing, RASLAN 2017, p. 107-110, 4 pp. 2017

Publisher

Tribun EU

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

References:

RIV identification code

RIV/00216224:14330/17:00095304

Organization unit

Faculty of Informatics

ISBN

978-80-263-1340-3

ISSN

UT WoS

000426613500012

Keywords in English

PoS tagging; morphological tagging; language model; Czech

Tags

International impact
Změněno: 8/4/2021 14:45, doc. Mgr. Pavel Rychlý, Ph.D.

Abstract

V originále

The paper describes a new Part of speech (PoS) tagger which can learn a PoS tagging language model from very short annotated text with the use of much bigger non-annotated text. Only several sentences could be used for training to achieve much better accuracy than a baseline. The results cannot be compared to the results of state-of-the-art taggers but it could be used during the annotation process for a pre-annotation.

Links

GA15-13277S, research and development project
Name: Hyperintensionální logika pro analýzu přirozeného jazyka
Investor: Czech Science Foundation
LM2015071, research and development project
Name: Jazyková výzkumná infrastruktura v České republice (Acronym: LINDAT-Clarin)
Investor: Ministry of Education, Youth and Sports of the CR