D 2017

Correlation-based 2D Registration Method for Single Particle Cryo-EM Images

ANOSHINA, Nadezhda A.; Andrey S. KRYLOV a Dmitry SOROKIN

Základní údaje

Originální název

Correlation-based 2D Registration Method for Single Particle Cryo-EM Images

Autoři

ANOSHINA, Nadezhda A. (643 Rusko); Andrey S. KRYLOV (643 Rusko) a Dmitry SOROKIN (643 Rusko, garant, domácí)

Vydání

Montreal, Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), 2017, od s. 1-6, 6 s. 2017

Nakladatel

IEEE

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Kód RIV

RIV/00216224:14330/17:00102166

Organizační jednotka

Fakulta informatiky

ISBN

978-1-5386-1842-4

ISSN

UT WoS

000428743900049

EID Scopus

2-s2.0-85050675252

Klíčová slova anglicky

Image registration; cryo-electron microscopy; cryo-EM particle alignment

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 30. 4. 2019 06:09, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

The amount of image data generated in single particle cryo-electron microscopy (cryo-EM) is huge. This technique is based on the reconstruction of the 3D model of a particle using its 2D projections. The most common way to reduce the noise in particle projection images is averaging. The essential step before the averaging is the alignment of projections. In this work, we propose a fast 2D rigid registration approach for alignment of particle projections in single particle cryo- EM. We used cross-correlation in Fourier domain combined with polar transform to find the rotation angle invariant to the shift between the images. For translation vector estimation we used a fast version of upsampled image correlation. Our approach was evaluated on specifically created synthetic dataset. An experimental comparison with a a widely used in existing software iterative method has been performed. In addition, it was successfully applied to a real dataset from the Electron Microscopy Data Bank (EMDB).