2017
Correlation-based 2D Registration Method for Single Particle Cryo-EM Images
ANOSHINA, Nadezhda A.; Andrey S. KRYLOV a Dmitry SOROKINZákladní údaje
Originální název
Correlation-based 2D Registration Method for Single Particle Cryo-EM Images
Autoři
ANOSHINA, Nadezhda A. (643 Rusko); Andrey S. KRYLOV (643 Rusko) a Dmitry SOROKIN (643 Rusko, garant, domácí)
Vydání
Montreal, Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), 2017, od s. 1-6, 6 s. 2017
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/17:00102166
Organizační jednotka
Fakulta informatiky
ISBN
978-1-5386-1842-4
ISSN
UT WoS
000428743900049
EID Scopus
2-s2.0-85050675252
Klíčová slova anglicky
Image registration; cryo-electron microscopy; cryo-EM particle alignment
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 4. 2019 06:09, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The amount of image data generated in single particle cryo-electron microscopy (cryo-EM) is huge. This technique is based on the reconstruction of the 3D model of a particle using its 2D projections. The most common way to reduce the noise in particle projection images is averaging. The essential step before the averaging is the alignment of projections. In this work, we propose a fast 2D rigid registration approach for alignment of particle projections in single particle cryo- EM. We used cross-correlation in Fourier domain combined with polar transform to find the rotation angle invariant to the shift between the images. For translation vector estimation we used a fast version of upsampled image correlation. Our approach was evaluated on specifically created synthetic dataset. An experimental comparison with a a widely used in existing software iterative method has been performed. In addition, it was successfully applied to a real dataset from the Electron Microscopy Data Bank (EMDB).