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Abstract—Operating system fingerprinting methods are well-
known in the domain of static networks and managed environ-
ments. Yet few studies tackled this challenge in real networks,
where users can bring and connect any device. We evaluate
the performance of three OS fingerprinting methods on a
large dataset collected from university wireless network. Our
results show that method based on HTTP User-agents is the
most accurate but can identify only low portion of the traffic.
TCP/IP parameters method proved to be the opposite with high
coverage but low accuracy. We also implemented a new method
based on detection of communication to OS-specific domains. Its
performance is comparable to the two established ones. Next,
we discuss the impacts of traffic encryption and embracing new
protocols such as IPv6 or HTTP/2.0 on OS fingerprinting. Our
findings suggest that OS identification based on specific domain
detection is viable and corresponds to the current directions
of network traffic evolution, while methods based on TCP/IP
parameters and User-agents will become ineffective in the future.

I. INTRODUCTION

The trend of modern networks is to allow users to bring
and connect any device to the network. Such freedom is
convenient for the users but can introduce new security risks
to the network. To protect it from threats, it is necessary to
know what devices are currently connected and keep track
of changes in the network. Operating system identification
is the very first step in understanding the situation in the
network. However, most research in this field often aims at
static networks with servers and desktops, whereas current
network solutions move towards dynamic address assigning
to any type of connected device.

Passive OS fingerprinting is a transparent method for OS
identification. Each OS has specific settings which leave a
fingerprint in packets sent by the system [1]. The passive
OS identification analyses packets originating from a system.
Based on the fingerprint found in a packet, a particular OS is
identified. An alternative approach to the passive OS identifi-
cation is the active OS identification where OS is determined
by the active probing of the system. A comparison of the active
and the passive OS detection in term of precision is provided
in [2].

We have formulated four use-cases where security managers
can benefit from OS fingerprinting in the context of dynamic
networks:
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o Unsupported OS — rapid development of OS versions lead
to many users still using an outdated version without
security updates. This problem is obvious especially in
mobile OS where 9 % of Android users have version
older than 4.4 [3].

o Decision making — knowledge of what devices are con-
nected helps security administrators to take the right
decision and react to incidents more precisely to security
incidents [4].

e BYOD security policy — Bring Your Own Device is the
principle of dynamic networks, but some networks have
policy restrictions on which devices can users bring or
on using only specific systems.

e Static networks — any change of device behind IP address
or disallowed OS in the segment can indicate a rogue
device and should be investigated. Methods designed
for dynamic networks are implicitly capable of such
detection.

The results of our work aids to understand behaviour of the
passive OS fingerprinting methods in the jungle of wireless
networks. Based on our work, an administrator can objectively
choose a suitable OS fingerprinting method that fits his needs
and use-cases in terms of accuracy, precision and recall.

In our work, we study methods for passive OS fingerprint-
ing, specifically the methods using flow-based passive network
monitoring. Passive monitoring was chosen because it can
monitor the network continuously and does not depend on
any schedule (e.g., daily) of active scans. This is important
in dynamic networks where devices behind an IP address can
change rapidly and at irregular intervals. The network flow
technology allows us to reduce the computational complexity
of the monitoring and deploy the fingerprinting methods on
the backbone of the network.

We implemented three OS identification methods based on
HTTP User-agents parsing, TCP/IP parameters fingerprint [5]
and communication with specific domains [6]. Next, we ex-
perimented with a combination of the methods so that it
would benefit from each one. Finally we describe how we
transformed the usually single packet inspection methods into
the notion of network flows.

We collected flow data from the Wi-Fi subnets of university
campus network and enriched them with logs from DHCP
and Radius servers to get a baseline for the experiments. On
this dataset, we measure for how many connected devices we



can identify OS and we calculated the performance metrics
(accuracy, precision, recall, f-score) for each method used.

Our main contribution is the comparison of OS fingerprint-
ing methods performance in dynamic networks. We extended
the work on a new OS identification method detecting commu-
nication with specific domains and we publish our fingerprint
databases together with dataset collected from network probes
and management server logs. Furthermore, we discuss the pros
and cons of the methods according to our results and we
identify the future challenges in OS fingerprinting arising from
new network protocols and trends in modern networks.

The rest of this paper is structured as follows. Section II
reviews current knowledge about OS fingerprinting. In sec-
tion III we describe how the methods were implemented
and how we measure packet header fields used to identify
operating system. Collected dataset is presented in Section IV
and results of methods on this dataset are summed up in
Section V. Discussion of results and methods is in Section VI
and conclusions in Section VIIL.

II. RELATED WORK

The majority of information for an OS fingerprint is col-
lected from TCP/IP packet headers and application protocols.
An approach using TCP/IP packet header is well investigated.
Lipmann et al. [5] present classifiers capable of identifying
9 classes of OS from packet headers. The classifiers leverage
machine learning techniques including cross-validation testing.
Tygai et al. [7] employs a SYN packet properties such as TTL,
packet length, TCP window size setting and TCP options.
Their classifier based on Euclidian distance can correctly
identify 95.5 % of operating systems from nearly 2000 SYN
packets.

From application protocols, information such as HTTP
User-agent, HTTP domain, or DNS queries can be used.
Authors of [8] utilize characteristics of DNS queries specific to
individual OS, e.g. unique domain names, query patterns, and
time intervals. Husak et al. [9] address a current challenge
for OS identification from application protocol - network
traffic encryption. They present an approach combining TLS
fingerprint with a database of HTTP User-agents to identify
OS even in encrypted traffic.

Machine learning (ML) techniques are used to generate new
OS features and signatures. Aksoy et. al. [10] employ machine
learning algorithms to identify packet features suitable for OS
detection. They use genetic algorithms for feature subset se-
lection in three ML algorithms. The combination of automatic
feature selection and ML algorithms enables the adaptive OS
detection and reduces the number of packet features needed
for OS classification. Support Vector Machine for remote OS
recognition is proposed in work of Zhang et. al. [11]. Their
SVM-based OS detection is claimed to be effective in the
discovery of new OS signatures.

A significant part of the literature investigates the possibility
of OS identification at large scale. For this use case, network
flows are mostly used as they significantly reduce the volume

of analysed information. Jirsik et. al. [12] proposes a high-
performance flow-based system for OS detection with 95.9 %
identification rate. Mossel [6] investigates the differences
between updates procedures of operating systems at network
flow level. The update procedures are thoroughly described
for all main OS families. The author concludes, that it is
possible to identify main families of OS using the update
procedure signatures in network flows. Matousek et al. [13]
present an approach using a combination of TCP SYN packet-
based identification with additional HTTP header check. They
enhance standard IPFIX records by additional information to
allow large-scale detection. They further introduce fall-back
loop from data collector to the network probe in order to keep
OS fingerprint database updated. The limitations of automatic
OS fingerprint are discussed by Richardson in [14] and they
identify four major challenges for automatic OS detection.
The first challenge lies the inability of current tools to find
a generalizable and sufficiently discriminative classification
rules for different OS versions. Secondly, fully automatic
tools cannot easily exploit semantic knowledge of protocols
or generate multi-packet probes and attributes. The remaining
challenges are the ineffectiveness of the tools in real networks
and overfitting of the detection techniques.

The OS identification itself often serves for more complex
security challenges. Osanaiye and Dlodlo [15] show how
to use TTL values to identify OS of a host in a cloud to
discover the origin of a DDoS attack. The OS detection can
be leveraged as an identification of vulnerable SDN controllers
as shown by Azzouni et al. [16].

Although many OS identification methods have been devel-
oped, there exist only few tools for passive OS identification.
The best-known tools are pOf and Ettercap. pOf [17] is a
passive TCP/IP stack fingerprinting tool. It uses a database
of fingerprint descriptions stored in a text file to identify an
OS. An advanced version of pOf called k-pOf [18] provides
increased throughput by implementation on the Linux Kernel
level. The k-pOf tool can process up to 450kpps. Ettercap
is an open-source tool originally designed for man-in-the-
middle attacks. However, one of its main functionalities is OS
fingerprinting and generating host profiles.

III. FINGERPRINTING METHODOLOGY

In this section, we describe traffic monitoring and imple-
mentation details of OS identification methods. Each method
has its own limitation in how much information it can provide
about the OS. To unify this information levels, we introduce
a hierarchical model of operating systems. The OS hierarchy
is based on four levels of details which serve as a common
ground to compare the OS identification methods:

1) Operating system — formal root of the hierarchical

structure.

2) Vendor — the most general family of OS based on
its vendor. Operating systems from one vendor often
share the same kernel or applications and exhibit similar
network behaviour.

3) OS name — name assigned by the vendor.



4) Major version — version of OS that is usually used for

its identification.

5) Minor version — sub-version of OS; typically carries only

minor improvements and changes to the OS.

To monitor network traffic, we use extended network
flows [19]. A network flow is an abstraction of a network
connection. It is defined as a set of packets or frames passing
an observation point in the network during a certain time
interval. All packets belonging to a particular flow have a set
of common properties called flow keys. A basic set of flow
keys consists of source and destination IP address, source and
destination transport port, and transport protocol.

Network flow contains the basic set of keys usually comple-
mented by statistics about the number of transmitted packets
and bytes, timestamps, or TCP flags used. An extended IP
flow [19] refers to a network flow with basic flow keys
that is extended with additional information, usually from
application layer. A common information added to a flow
is data from HTTP protocol (domain, host, referrer, User-
agent) and DNS protocol (DNS query, query type, DNS
response). Further protocols, such as email protocols (SMTP,
POP3, IMAP), Samba, or SSL/TLS can also be analysed and
relevant information added to extended flows. In our work,
we capture flows and export them using IP Flow Information
Export protocol (IPFIX) [20]. We choose IPFIX as it enables
to transport flows with variable length keys and allows to
add new information elements. We collect flow extensions for
TCP/IP parameters, HTTP User-agent, HTTP hostname, and
TLS Service Name Indication (SNI).

The TCP/IP parameters are measured from the first SYN
packet recorded in a flow. Specifically, we use extensions taken
from IP protocol header — packet Time to Live value and the
size of the first packet (IP Total Length). From the TCP header,
we measure the TCP Window Size header field.

User-agent string is taken from the corresponding field of
HTTP protocol and the probe parses the whole string to extend
the flow records by information about operating system and
application that generated the string.

The last 32 bytes of HTTP hostname from the packet header
are extended to the flow. SNI is a value taken from TLS
header field Server Name Indication Extension. This field is
not usually used in flow monitoring and has not yet been
specified as IANA IPFIX element [21], but it is virtually the
same thing as HTTP hostname and will gain more importance
with the spread of web traffic encryption.

A. TCP/IP Parameters

OS identification based on analysis of TCP/IP parameters
depends on which header fields are considered. The process
of feature selection is a common challenge during OS fin-
gerprinting with TCP/IP stack parameters. The features range
from the simple use of Time to Live value to analysis of
almost every bit in IP packet header. Especially machine
learning models for feature extraction often chose parameters
that depend on both communicating parties or the application
(e.g., source/destination port numbers, TCP flags, checksum)

rather than the OS itself [22]. We select features that depend
solely on the OS kernel and can be used directly for its
identification. Moreover, we want to use the lowest possible
number of parameters while still being able to distinguish
different versions of operating systems. Our selected features
are listed below:

« Initial SYN packet size (synSize) — the size of the first
packet of TCP connection is influenced by the specific
implementation of the operating system.

e TCP window size (winSize) — initial value of window
size specifies the number of octets the receiving side is
currently prepared to receive [23]. Default value comes
from the OS settings.

e Time to Live (TTL) — IPv4 protocol value initially set
by the OS kernel which is decremented by one on each
network element to prevent endless routing of packets.
We round the captured value to the next higher power of
two so that it is not affected by observation point location
as suggested by Lippman et al. [5].

The next step after selecting features is to prepare a database
which maps specific parameter values to the operating system.
Our approach to creating such fingerprint database is similar to
the one suggested by Matousek et al. [13] which maps infor-
mation gained from HTTP User-agents to TCP/IP parameters.
We have processed flow data from the whole university during
two months to cover as many different devices as possible,
aggregated them into groups with the same triple (synSize,
winSize, TTL), and finally assigned the corresponding OS to
each triple.

Following this process, we have created a database of
2078 unique mappings from TCP/IP parameters to 51 unique
operating systems and their major and minor versions (when
available) weighted by their appearance (i.e., number of flows
with the same triple) in our network. This weighting called
confidence is necessary to deal with different operating sys-
tems or their versions that send packets with the exact same
triple of TCP parameters. We compute confidence as the
fraction of the number of flows of a specific OS version
compared to the total number of flows with the same triple.

Example of our fingerprint database is listed in Table 1. The
whole database is publicly available on GitHub [24].

TABLE I
EXAMPLE FINGERPRINT DATABASE
synSize | winSize | TTL | OS Confidence
52 8192 128 | Windows 10.0 552 %
52 8192 128 | Windows 6.1 31.9 %
52 65535 128 | Windows 10.0 74.9 %
60 65535 64 Android 6.0 48.2 %
60 14600 64 Android 4.4 28.4 %
60 29200 64 Ubuntu 20.4 %
64 65535 64 Mac OS X 10.12 26.5 %
64 65535 64 iOS 10.3 10.3 %

The last step in method implementation is the actual OS
identification. For a flow with all three parameters included,
we match OS from the fingerprint database and assign the



one with the highest confidence. Using this approach, the
algorithm can decide even if it gets more possibilities for
operating system. Its decision would be the one with the
highest probability to be correct, i.e. the highest confidence.

To validate our measurement, we compare our fingerprint
DB to databases of pOf and Ettercap. Surprisingly, neither of
them uses the size of initial SYN packet and the comparison
is limited to only two parameters. The characteristics of main
operating systems (Windows, MAC OS X) are the same.
However, the pOf and Ettercap DBs generally lack updates
(the last update of fingerprints on GitHub was 21 May 2014
for pOf and respectively 26 Oct 2011 for Ettercap). Because of
this outdated fingerprint DBs, new systems like Windows 10
or Android 4.4 and higher, that currently dominate the network
traffic, are not included and hence not recognized by the tools.

Creating a complete, up-to-date database of fingerprints is
a challenging task. Our goal is to create a database containing
fingerprints of as many different systems as possible. We
decided not to use any strictly managed environment as there
would be lack of desired diversity. Instead, we focused on
processing data from User-agents which can be done in large
scale and covers most currently used systems.

Our fingerprint DB contains confidence rating calculated
from the large volume of network traffic. This allows us to
deterministically identify OS of a flow even if the DB contains
more records for the same triple. However, this approach
results in identification biased by current market share of each
OS within our university population where an uncommon OS
can be overshadowed by a popular one. We identify this fact
as a general limit of TCP/IP parameters identification method
because every fingerprint database must deal with parameter
collisions.

B. HTTP User-Agent

HTTP User-agent is defined in [25] as a string from user
originating the HTTP request to provide information about
operating system and browser to the server. The purpose of
such identification is that a web server can serve content
customized for a specific device or software and increase the
user experience while browsing web pages. Nowadays, it is
typical for web pages to have different versions for mobile
and desktop devices.

The User-agent string construction is fully under control
of application software independent of the underlying oper-
ating system, as User-agent belongs to the application layer
of network communication. Moreover, the HTTP/1.1 speci-
fication [25] explicitly states that User-agent should not be
generated with needless details to prevent user fingerprinting.
However, in practice, it is common that applications fill in the
operating system name with its major and minor version and
often even with the specific build of that version.

To identify operating system from the provided string, a
parser has to be implemented. We use commercial Flowmon
probes [26] to capture flow data and these probes have built-
in capabilities for User-agent parsing. When a packet with
User-agent is captured, it is compared to probe’s User-agent

database and OS name, major and minor version, and build
values are assigned to the whole flow. When an unknown
pattern of User-agent is encountered, the flow is treated as
no User-agent was present at all.

Even if the parser is a part of a commercial product, we
believe its results are comparable to open-source libraries for
parsing User-agents. Moreover, the probes receive periodical
updates which (should) contain updates of the parser database
and keep the results up-to-date with new operating systems
and their versions.

C. Specific Domains

Modern operating systems are configured to do many
specific actions upon connecting to a network. These
actions include connectivity testing (e.g., connectivity-
check.android.com) and checking for system updates (e.g.,
update.microsoft.com). This activity can be monitored on the
level of DNS communication during name resolving, or as the
communication to external servers. We use the latter variant
as it is more straightforward to monitor with extended flow
data. Both connectivity checks and updates are realized as web
traffic over HTTP(S) which can be detected by the request
hostname or SNI.

We note that similar identification could be done using
IP addresses of the servers. But this approach would be
hard to implement and maintain through time as current
cloud solutions change the servers IP regularly over time and
according to client geographic location. From this point of
view, methods based on hostname/SNI are more viable.

We have prepared a database connecting domains to op-
erating systems following two approaches. At first, we tried
to find domains of interest manually. We reviewed technical
documentation and developer guidelines from the major OS
vendor and were looking for details of update process and
connectivity check implementations. After that, we focused on
blogs and forums where administrators were solving problems
with firewall configurations. These proved very useful as
blocking of a specific domain disrupts OS functionality and
reveals the real domains used.

Secondly, we tried to aggregate traffic over OS from User-
agent and hostnames just like in TCP/IP parameters database.
This approach does not work directly (as it is flooded by user
activity), but it helps us to identify more specific domains
that have not been found in the documentation. We manually
evaluated their purpose and added the ones connected to an
OS activity to the database. We have published this database
on Github [24].

Employment of these methods corresponds to current de-
velopment of network communication. Cloud synchronization
and updates will increase in use and ensure this method to be
even more relevant. We also believe that the domain names
will not change rapidly (e.g., Microsoft uses domain msft-
ncsi.com for more than 8 years without a change throughout
all Windows versions [27]) and once a mapping is created, it
won’t need frequent updates.



Moreover, this method overcomes issues with the deploy-
ment of IPv6 in end networks and communication encryption.
While IPv6 forces changes in TCP/IP parameters semantics
(see Section VI) it will have no effect on specific domains as
their monitoring is solely on the application layer. Encrypted
communication will deny the possibility of packet inspection,
but specific domains method can work monitoring SNI field.

D. Combination of Methods

By combining all previously mentioned methods, we im-
plemented a method that benefits from the advantages of the
individual methods and is not limited to any specific network
layer. Each method is used to identify the OS individually and
their results are then combined. We treat the methods equally
and the final decision is based on majority voting principle.

In the case when each method has different result or only
two methods are able to identify OS and they disagree, the
results are taken in the order of User-agent, Specific domains,
and TCP/IP parameters. We have decided for this order
because TCP/IP parameters are often the same for multiple
operating systems and the decision is based on the highest
probability to be correct. User-agents are then preferred over
specific domains as it is a long-established method.

Each method has different level of details that it could
provide about the OS. For their comparison later in this work,
we need to set a common level based on the OS hierarchy.
The level of detail each method can provide is summarised in
Table II. TCP/IP method can provide major and minor version
information, but parameters are often the same for multiple
versions and can lead to overfitting of identification. Hence,
the levels could be omitted and are marked in brackets.

IV. DATASET

The dataset covers data from all subnets of our university
wireless network (Eduroam) including buildings of multiple
faculties and dormitories. It contains data from the first week
in May 2017 and is a combination of three data sources —
flow data, Radius logs, and DHCP logs. In total, our dataset
covers:

e 79 087 345 flows in IPFIX format,

e activity of 21 746 unique users,

e 253 374 Wi-Fi sessions,

e 25 642 unique MAC addresses (1692 vendor prefixes),
e 6 104 unique IP addresses assigned.

TABLE I
OS IDENTIFICATION METHODS LEVEL OF DETAIL

Method Vendor 0 Maj9r Min.0r
name version version

User-agent v v v v

;I;SSP/IP parame- 4 4 ( ‘/) ( ‘/)

Specific domains v v X

Combination v v v v

Flow data represent our primary source of information
and contains extension fields discussed in Section III. Our
flow monitoring probes are located at the backbone network
connecting the university to the Internet, hence our visibility
covers the communication from and to university. As we are
interested in dynamic networks, we have filtered the traffic so
that it contains only traffic originating from (i.e., source IP
address is from) our wireless subnets. The opposite direction
flows (target IP in our subnet) ate not interesting for OS
identification of a host and were omitted.

Logs from DHCP servers then enrich the sessions by device
MAC address and device name. As the network is dynamic
and we have no control over connected devices, we have to
derive the ground truth for OS identification from these logs.
A large portion of devices comes with a pre-installed operating
system with default device name. In many cases, it is hard or
impossible for a common user to change the device name. For
example, Android devices use string “android-<android_id>",
Apple products use “<user>-iPhone”, “<user>-iPad”, and
Microsoft uses default name “Windows-Phone” for its mobile
products.

All connections to our wireless network must be authen-
ticated with username and password. We have collected logs
from Radius servers, which provide the authentication service.
From these logs, sessions are created as 4-tuple (id, assignedIP,
startTime, endTime), where id is a simple auto-incrementing
counter. Sessions then serve as a ground truth to measure
methods coverage. We have removed the user identity from
dataset due to privacy reasons.

In a wireless network, a device can freely connect and
disconnect and we cannot control how long the device is
connected to the network. The session duration is a key factor
influencing the number of flows to decide from during OS
identification. Sessions duration ranged from a few seconds to
over 19 hours with the average of 31.8 minutes and median
8.6 minutes. The cumulative distribution function for duration
time is depicted on Fig. 1.
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V. RESULTS

We have implemented the methods described in Section III
and used them to identify OS of each Wi-Fi session from
our dataset. The identification does not work on a single flow
but takes every flow from the session with OS identified into



account. For a session containing more flows, OS is assigned
to each flow and final result for the session is decided based
on majority voting principle. This principle is used because
some devices exhibit fingerprints of multiple OS during one
session.

Similarly, the combination method can get into a situation
where one session contains fingerprints of multiple operating
systems (i.e., User-agent method result conflicts with TCP/IP
parameters). This scenario occurred in 26.52 % of sessions and
the conflicts were solved as described in Section III-D.

A. OS Identification Coverage

Our first experiment regarding OS identification is to mea-
sure how many sessions can the methods evaluate. To evaluate
a session, at least one flow in the session needs to carry
required information for a method to work. The User-agent
method needs a HTTP request with a UA containing OS
information. This requirement is fulfilled by 64.3 % of the
sessions from the dataset. Specific domain method requires
a HTTP(S) request on a domain from its dictionary. This is
present in 78.1 % sessions. TCP stack method is the most
generic and requires just a TCP connection, from which the
parameters can be measured which is covered in 88.4 % of
sessions. Our combination method needs at least one of the
previous methods to have results and can identify OS in 93.4 %
of the sessions. Summary of the coverage of OS identification
methods in the dataset is depicted on Fig. 2.
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Fig. 2. Coverage of OS identification methods

Combination method was able to identify OS in more
sessions than other methods which was caused by the presence
of HTTP flows without TCP/IP parameters in our dataset.
We have identified cause of this problem in the flow export
of initial SYN packets with flags CE (Congestion Window
Reduced, ECN-Echo) set, which caused the exported to think
it is not an initial SYN packet and to skip filling the extended
fields. We have reported this issue to the flow exporter vendor
which confirmed our findings and implemented fix in the next
version of the exporter.

B. OS Identification Accuracy

The second experiment explores how good the methods are
in OS identification. In the terms of statistical analysis, our

methods fall into multi-class classifier category with [ non-
overlapping classes. We have computed performance measures
of accuracy, precision, recall, and f-score for each method
according to [28]. As the distribution of operating systems is
not uniform and there are big differences in their appearances
in the dataset, we have decided to use the micro-averaging
technique to favour the bigger classes.

Our dataset contains ground truth for OS identification
extracted from DHCP logs (see Section IV), which is on the
level of details of OS name from the OS hierarchy. It is also
the highest level of detail the specific domains method could
achieve and hence all methods performance is measured on
this level of detail to ensure a fair comparison.

We have calculated confusion matrix with true positive (TP),
false positive (FP), true negative (TN), and false negative (FN)
values for each of the [ classes (OS names) by comparing
classification result to the ground truth. Then we computed
the performance measures from the following equations:

1 TP, +TN;
AverageAccuracy = - -
g 4 l ;TPi+TNi+FH+FN,»
l
TP,
Precision,, = 7 Lzt
Zi:l( Pi"’FPi)
l
TP,
Recall, = 7 Li=1
> i1 (TP + FN;)
F— score 2 - Precision,, - Recall,,
_ . =

Precision,, + Recall,,

Exact performance measures for individual methods are
listed in Table III, their comparison is then depicted on Fig. 3.

TABLE III
MICRO AVERAGING FOR MULTI-CLASS CLASSIFIER PERFORMANCE
MEASURES
Method Accuracy | Precision | Recall | F-score
User-agent 0.9189 0.9812 0.6063 | 0.7495
TCP/IP parameters 0.8088 0.5249 0.4643 | 0.4927
Specific domains 0.8402 0.6286 0.4907 | 0.5512
Combination 0.8582 0.6587 0.6041 | 0.6302

User-agent method shows generally best results as appli-
cations generating HTTP requests are usually honest about
its operating system. The significant drop in recall compared
to other measures is caused by the high number of sessions
without usable User-agent (i.e., no or encrypted User-agent
sent, or it contains information only about the application and
not OS) which causes many false negatives.

TCP/IP parameters method exhibits the worst performance
from tested methods. We identify the main cause in two areas
— Apple products sharing the same parameters, and Windows
and Android devices using many different parameters. The
first issue causes that most sessions with OS from Apple
family (MAC OS X, i0OS, Darwin) are identified as MAC



OS X since this method alone has no way to distinguish
between them. On the other hand, Windows and Android
devices communicate with many parameters configurations
and their traffic dominance hides other operating systems in
classification.

The new method using detection of specific domains proves
to be capable of OS identification at large scale and even
surpass the established TCP method. It can distinguish OS
with small market share but suffers from the Apple issues
discussed above. All Apple products communicate with a
similar set of domains and even their applications installed on
different OS (e.g., iTunes) download updates from the same
domains. We can generalise this statement to all vendors as it
is not economic to maintain distinct update server for every
product they develop.

Our combination method embraces all positives and neg-
atives from previous methods. It is able to identify OS in
the highest portion of sessions and performance measures are
better than TCP and specific domain methods. However, it is
not as precise as the User-agent method which is the result of
each method having the same weight during identification and
flows without UA pushing the decision towards a wrong one.
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Fig. 3. Micro averaging for multi-class classifier performance measures

Besides the performance of the methods, we can look at
the situation in our Wi-Fi network according to the identified
operating system. Fig. 4 shows the market share of vendors
based on results from the combination method. Mobile devices
such as phones and tablets dominate the dynamic network
(Android 56.18 %, MAC OS X 30.07 %) and traditional oper-
ating systems currently have decreasing popularity (Windows
4.48 %). Unknown means that the method could not evaluate
the session and Other category is the rest of operating systems
with low market share (e.g., BlackBerry).

VI. LESSONS LEARNED AND DISCUSSION

In our experiment, we had to tackle several problems during
the data gathering and aggregation. The first part of this section
discusses these challenges and drafts possible solutions that

Google
Apple
Unknown
Microsoft
Linux i 0.6%
Other 0.4 % ‘ ‘ ‘ ‘ ‘ ‘
0% 10 % 20 % 30%  40% 50 % 60 % 70 %

Fig. 4. Operating system usage share of our network grouped by vendor

might be useful for future work. The second part of this
section presents possibilities for future use of tested methods
and foreshadows obstacles, that will arise from the deployment
of new network communication protocols.

A. Data Collection

The first challenge belongs to the data gathering and cor-
relation, as fingerprinting methods need input from multiple
sources (i.e., network flow metadata and application logs)
and their timestamps are not always precisely synchronised.
Establishing ground truth requires a lot of manual work in
combining data from these sources, even with the use of
centralized logging server. The efficiency would be greatly
improved if this process was automated.

Finding the method for establishing ground truth poses the
second challenge. Our method of using DHCP log parameters
of device name works well for Apple and Google operating
systems, that use easily identifiable device name by default
and its change by a user is discouraged or impossible. On
the other hand, Microsoft and Linux operating systems allow
simple device name change and thus these devices couldn’t
be identified as easily. The second parameter we tried to
use was MAC address, but it proved not to be helpful for
ground truth establishment. Unfortunately, we were unable to
find any meaningful mapping of Network Interface Controller
vendors to operating systems of the devices due to the usage
of same hardware family by multiple products with different
operating systems. Ground truth establishment in large scale
thus remains an open research problem for now.

The third major challenge is ensuring that all gathered ex-
tended flow data is correct and complete. These properties are
often difficult to achieve on a vast network, as the monitoring
probes might get congested and return incomplete information.
We have experienced problems with some missing extended
flow fields in approximately 3 % sessions. It is important to
use probe configuration that will allow it to collect necessary
flow parameters under usual network load.

The last obstacle we identified is coping with NAT (Network
Address Translation) technology. We have not encountered this
problem since we do not use any address translation on our
Wi-Fi network. In a general network, NAT will confuse all
three fingerprinting methods since it will be considered as a



singular device. The solution of this problem might be a focus
for future research which will combine results from research
on NAT detection with OS identification.

B. OS Detection Obstacles

All tested methods for passive OS fingerprinting will have to
adapt to emerging new standards of network communication.
We identify the following trends and protocols, that will have
to be supported: IPv6, encrypted communication through TLS
and HTTP/2.0 or QUIC [29] by Google. All of them will affect
each of the methods in some way, although not necessarily to
the same extent.

User-agent fingerprinting method will be the most affected
when the above-mentioned protocols are commonly used.
Because the current trend in network communication is to
encrypt all data transfers with TLS by default, the User-
agent field will not be readable during data transfer. In
HTTP/2.0 [30], the encryption was not made mandatory,
but browser developers have explicitly stated that it will be
supported only in encrypted format [31]. The QUIC protocol
explicitly requires encryption of content and only few imple-
mentations send UAID (User Agent equivalent) in the first
unencrypted client hello message. This indicates that User-
agent method’s usability will be declining soon.

TCP/IP parameters method will not be affected by encryp-
tion, but it will have to be adapted for concurrent use of
IPv4 and IPv6. The diminishing address pool and the ever-
growing number of IoT devices that need public IP addresses
will require extended usage of IPv6 protocol. In IPv6, the
TTL parameter equivalent, Hop Limit, is suggested by Router
Advertisement messages for all connected devices and the
IPv4 header field Total Length was changed to Payload Length
with slightly different semantics. Similarly, the QUIC protocol
is based on UDP over which it establishes connection. The
parameters of the first packet could be measured, but it would
require changes to monitoring probes and new studies of
such parameters. It follows that new fingerprinting parameters
should be identified for IPv6 and current fingerprint databases
should be extended to cover both versions of IP protocol and
possibly to cover both TCP and UDP parameters.

Specific domains method will remain functional with en-
crypted traffic and unaffected by underlying network protocols
as the SNI field remains in all new protocols. It will even be
able to identify new operating system versions from already
known vendors if the domain remains unchanged. However,
to keep its database up to date it is necessary to monitor
any changes in specific domains done by the vendor. If such
process is in place, we believe that this method will be the
most reliable and accurate in the near future.

All these challenges push OS fingerprinting method toward
decreasing level of details about the OS. It can be expected that
only OS name (or even only vendor) will be distinguishable
by the methods. While this situation helps protect user privacy,
it conflicts with the use-case of unsupported OS version
detection.

VII. CONCLUSION

In this paper, we implemented two well-known methods
for OS identification and expanded work on a new method
which identifies OS based on communication with update or
connectivity check servers. Finally, we developed a method
combining the three methods in a fashion that they have
equal weight in the final decision. Source codes, fingerprint
databases and dataset are published on Github [24].

We have tested all methods on traffic from a large dynamic
network to evaluate how well are different approaches able
to identify OS in such environment. To the best of our
knowledge, this is the first study of passive fingerprinting
methods performance in an environment, where users can
bring any device and connect it to the network without control
or interference from the researchers. Moreover, using this
environment we obtained traces from modern devices which
is often problematic for researchers.

The results show great differences between TCP/IP and
User-agents method caused by their requirements on input
data. In our dataset, TCP/IP parameters method relying on
network and transport layer can identify 24 % more sessions
than application layer based User-agent method. Specific do-
mains method relies on application layer too but works on
both encrypted and unencrypted communication which helps
it to identify OS in 14 % more sessions than the UA method.

Performance measures of accuracy, precision, recall and
f-score were computed for each method. The overall best
method proved to be the one with the most requirements on
input data — User-agents. Its precision over 98 % shows it
works well in any environment if the input contains what
it needs. The accuracy of all methods is over 80 %, but
other measures show that the rate of false positives and false
negatives is quite high for all of them.

Finally, we discuss the challenges in large network moni-
toring and obtaining ground truth for OS fingerprinting. We
also discuss the impacts of new Internet protocols on OS
identification methods and identify the specific problems that
will have to be solved.

For the future work, we plan to develop a method for
automatic updates for the Specific domains identification.
Similarly to TCP/IP parameters updates from flows with User-
agents [13], it should be able to continuously monitor the
network and update its database with new patterns. This work
will ensure that the method won’t end up outdated in the
future.
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