a 2017

Local bandwidth selectors for functional kernel regression

KURUCZOVÁ, Daniela and Jan KOLÁČEK

Basic information

Original name

Local bandwidth selectors for functional kernel regression

Authors

KURUCZOVÁ, Daniela and Jan KOLÁČEK

Edition

2017

Other information

Language

English

Type of outcome

Konferenční abstrakt

Field of Study

10101 Pure mathematics

Country of publisher

Spain

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Organization unit

Faculty of Science

Keywords in English

Functional data; nonparametric regression; kernel methods; bandwidth selection

Tags

International impact, Reviewed
Změněno: 12/1/2018 14:50, doc. Mgr. Jan Koláček, Ph.D.

Abstract

V originále

Nonparametric regression methods based on kernel smoothing rely on selection of suitable bandwidth parameter in order to minimize the mean squared error. We focus on the functional regression, i.e. the case when the predictor is a functional random variable. In finite-dimensional setting, global selection of bandwidth (same bandwidth is used for all data points) is often sufficient. Due to sparsity of infinite dimensional space, local bandwidth selection (different bandwidth is chosen for each data point) seems to be more suitable approach. In our study, we focus on local bandwidth selection methods. Furthermore, we propose local bandwidth selection method based on penalizing functions. Using simulation studies, we compare local bandwidth selection methods with each other and with their global counterparts.

Links

GA15-06991S, research and development project
Name: Analýza funkcionálních dat a související témata
Investor: Czech Science Foundation