a 2017

WalDis: Mining Discriminative Patterns within Dynamic Graphs

VACULÍK, Karel and Lubomír POPELÍNSKÝ

Basic information

Original name

WalDis: Mining Discriminative Patterns within Dynamic Graphs

Authors

VACULÍK, Karel (203 Czech Republic, guarantor, belonging to the institution) and Lubomír POPELÍNSKÝ (203 Czech Republic, belonging to the institution)

Edition

MEMICS 2017. 12th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, 2017

Other information

Language

English

Type of outcome

Konferenční abstrakt

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/00216224:14330/17:00099794

Organization unit

Faculty of Informatics

Keywords (in Czech)

dolování z dat; dolování z grafů; dynamické grafy; dolování vzorů; diskriminativní vzory; náhodná procházka

Keywords in English

data mining; graph mining; dynamic graphs; pattern mining; discriminative patterns; random walk

Tags

International impact, Reviewed
Změněno: 11/4/2018 12:10, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Real-world networks typically evolve through time, which means there are various events occurring, such as edge additions or attribute changes. In order to understand the events, one must be able to discriminate between different events. Existing approaches typically discriminate whole graphs, which are, in addition, mostly static. We propose a new algorithm WalDis for mining discriminate patterns of events in dynamic graphs. This algorithm uses sampling and greedy approaches in order to keep the performance high. Furthermore, it does not require the time to be discretized as other algorithms commonly do. We have evaluated the algorithm on three real-world graph datasets.

Links

MUNI/A/0897/2016, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace VI.
Investor: Masaryk University, Category A