Operating system identification of communicating devices plays an important role in network protection. However, current networks are large and change often which implies the need for a system that will be able to monitor the network continuously and handle changes in identified operating systems. We propose an architecture of an OS fingerprinting system based on passive network monitoring and a graph-based data model to store and present information about operating systems in the network. We implemented the proposed architecture and tested it on the backbone network of Masaryk University. Our results suggest that it is suitable for monitoring a large network with tens of thousands of actively communicating devices.

System Architecture

Scheduler – controlling component which invokes data analysis. It is important to schedule the analysis to match collector data storage interval so that each run of analysis has new data to process.

Analyser – main data processing unit. Upon receiving data, an operating system is determined for every active IP address in the network according to the methods introduced in technical session [1].

Graph Database – information storage for further processing and visualizations.

Web Interface – a central point for data access and manipulation. Must provide big picture of operating systems in the network and individual host details.

Database Record Structure

- **Host** – element in the network. Has one attribute corresponding to its IP address for identification during OS detection.
- **Operating System** – specific version of OS with name attribute filled by our hierarchy format [1] - *OS name, Major version, Minor version.*
- **Has_OS_Actual** – the last discovered relationship of Host to OS. Carries time attribute to check when the last calculation was triggered. One Host node can have at most one adjacent Has_OS_Actual edge.
- **Has_OS_History** – edges to track the Host to OS relation in time. Every time OS is detected for a host, its current Has_OS_Actual edge is replaced by Has_OS_History with the same timestamp attribute and a new OS_actual edge is created.

Operating System Vendor Usage Share

- **Google** - 56.2%
- **Apple** - 31.8%
- **Unknown** - 6.6%
- **Microsoft** - 4.5%
- **Linux** - 0.6%
- **Other** - 0.4%

The market share of vendors based on results from the our measurement of our Wi-Fi network. Mobile devices such as phones and tablets dominate the dynamic network whereas traditional operating systems currently have decreasing popularity. Unknown means that the method could not determine the OS, Other category is the rest of operating systems with low market share (e.g., BlackBerry).

Source codes and testing datasets are available at: https://github.com/CSIRT-MU/PassiveOSFingerprint