J 2017

Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19

EMMANOUILIDIS, L., U. SCHUTZ, Konstantinos TRIPSIANES, T. MADL, J. RADKE et. al.

Basic information

Original name

Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19

Authors

EMMANOUILIDIS, L. (276 Germany), U. SCHUTZ (276 Germany), Konstantinos TRIPSIANES (300 Greece, guarantor, belonging to the institution), T. MADL (40 Austria), J. RADKE (276 Germany), R. RUCKTASCHEL (276 Germany), M. WILMANNS (276 Germany), W. SCHLIEBS (276 Germany), R. ERDMANN (276 Germany) and M. SATTLER (276 Germany)

Edition

Nature Communications, London, Nature Publishing Group, 2017, 2041-1723

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10608 Biochemistry and molecular biology

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 12.353

RIV identification code

RIV/00216224:14740/17:00100110

Organization unit

Central European Institute of Technology

UT WoS

000395883100001

Keywords in English

ZELLWEGER-SYNDROME; STRUCTURAL BASIS; IDENTIFICATION; BIOGENESIS; DOCKING; SYSTEM; DOMAIN; CRYSTALLOGRAPHY; RELAXATION; COMPLEXES

Tags

Tags

International impact, Reviewed
Změněno: 2/3/2018 09:46, Mgr. Pavla Foltynová, Ph.D.

Abstract

V originále

The transport of peroxisomal membrane proteins (PMPs) requires the soluble PEX19 protein as chaperone and import receptor. Recognition of cargo PMPs by the C-terminal domain (CTD) of PEX19 is required for peroxisome biogenesis in vivo. Farnesylation at a C-terminal CaaX motif in PEX19 enhances the PMP interaction, but the underlying molecular mechanisms are unknown. Here, we report the NMR-derived structure of the farnesylated human PEX19 CTD, which reveals that the farnesyl moiety is buried in an internal hydrophobic cavity. This induces substantial conformational changes that allosterically reshape the PEX19 surface to form two hydrophobic pockets for the recognition of conserved aromatic/aliphatic side chains in PMPs. Mutations of PEX19 residues that either mediate farnesyl contacts or are directly involved in PMP recognition abolish cargo binding and cannot complement a Delta PEX19 phenotype in human Zellweger patient fibroblasts. Our results demonstrate an allosteric mechanism for the modulation of protein function by farnesylation.

Links

LQ1601, research and development project
Name: CEITEC 2020 (Acronym: CEITEC2020)
Investor: Ministry of Education, Youth and Sports of the CR