Detailed Information on Publication Record
2017
Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19
EMMANOUILIDIS, L., U. SCHUTZ, Konstantinos TRIPSIANES, T. MADL, J. RADKE et. al.Basic information
Original name
Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19
Authors
EMMANOUILIDIS, L. (276 Germany), U. SCHUTZ (276 Germany), Konstantinos TRIPSIANES (300 Greece, guarantor, belonging to the institution), T. MADL (40 Austria), J. RADKE (276 Germany), R. RUCKTASCHEL (276 Germany), M. WILMANNS (276 Germany), W. SCHLIEBS (276 Germany), R. ERDMANN (276 Germany) and M. SATTLER (276 Germany)
Edition
Nature Communications, London, Nature Publishing Group, 2017, 2041-1723
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10608 Biochemistry and molecular biology
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 12.353
RIV identification code
RIV/00216224:14740/17:00100110
Organization unit
Central European Institute of Technology
UT WoS
000395883100001
Keywords in English
ZELLWEGER-SYNDROME; STRUCTURAL BASIS; IDENTIFICATION; BIOGENESIS; DOCKING; SYSTEM; DOMAIN; CRYSTALLOGRAPHY; RELAXATION; COMPLEXES
Tags
International impact, Reviewed
Změněno: 2/3/2018 09:46, Mgr. Pavla Foltynová, Ph.D.
Abstract
V originále
The transport of peroxisomal membrane proteins (PMPs) requires the soluble PEX19 protein as chaperone and import receptor. Recognition of cargo PMPs by the C-terminal domain (CTD) of PEX19 is required for peroxisome biogenesis in vivo. Farnesylation at a C-terminal CaaX motif in PEX19 enhances the PMP interaction, but the underlying molecular mechanisms are unknown. Here, we report the NMR-derived structure of the farnesylated human PEX19 CTD, which reveals that the farnesyl moiety is buried in an internal hydrophobic cavity. This induces substantial conformational changes that allosterically reshape the PEX19 surface to form two hydrophobic pockets for the recognition of conserved aromatic/aliphatic side chains in PMPs. Mutations of PEX19 residues that either mediate farnesyl contacts or are directly involved in PMP recognition abolish cargo binding and cannot complement a Delta PEX19 phenotype in human Zellweger patient fibroblasts. Our results demonstrate an allosteric mechanism for the modulation of protein function by farnesylation.
Links
LQ1601, research and development project |
|