Detailed Information on Publication Record
2017
Occurrence of Chlorotriazine herbicides and their transformation products in arable soils
SCHERR, Kerstin, Lucie BIELSKÁ, Petra KOSUBOVA, Petra DINISOVA, Martina HVĚZDOVÁ et. al.Basic information
Original name
Occurrence of Chlorotriazine herbicides and their transformation products in arable soils
Authors
SCHERR, Kerstin (40 Austria, belonging to the institution), Lucie BIELSKÁ (203 Czech Republic, belonging to the institution), Petra KOSUBOVA (203 Czech Republic), Petra DINISOVA (203 Czech Republic), Martina HVĚZDOVÁ (203 Czech Republic, belonging to the institution), Zdeněk ŠIMEK (203 Czech Republic, belonging to the institution) and Jakub HOFMAN (203 Czech Republic, guarantor, belonging to the institution)
Edition
Environmental Pollution, OXFORD, ELSEVIER SCI LTD, 2017, 0269-7491
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10511 Environmental sciences
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 4.358
RIV identification code
RIV/00216224:14310/17:00095554
Organization unit
Faculty of Science
UT WoS
000395360900035
Keywords in English
Chlorotriazine herbicides; Hydroxylated chlorotriazines; Atrazine; Simazine; Terbuthylazine; Sorption; Biotransformation; Water protection; Groundwater; Fluvisols; QuEChERS
Tags
International impact, Reviewed
Změněno: 9/4/2018 22:36, Ing. Nicole Zrilić
Abstract
V originále
Chlorotriazine herbicides (CTs) are widely used pest control chemicals. In contrast to groundwater contamination, little attention has been given to the circumstances of residue formation of parent compounds and transformation products in soils. Seventy-five cultivated floodplain topsoils in the Czech Republic were sampled in early spring of 2015, corresponding to a minimum of six months (current-use terbuthylazine, TBA) and a up to a decade (banned atrazine, AT and simazine, SIM) after the last herbicide application. Soil residues of parent compounds and nine transformation products were quantified via multiple residue analysis using liquid chromatography-tandem mass spectrometry of acetonitrile partitioning extracts (QuEChERS). Using principal component analysis (PCA), their relation to soil chemistry, crops and environmental parameters was determined. Of the parent compounds, only TBA was present in more than one sample. In contrast, at least one CT transformation product, particularly hydroxylated CTs, was detected in 89% of the sites, or 54% for banned triazines. Deethylated and bi-dealkylated SIM or AT residues were not detectable. PCA suggests the formation and/or retention of CT hydroxy-metabolite residues to be related to low soil pH, and a direct relation between TBA and soil organic carbon, and between deethyl-TBA and clay or Ca contents, respectively, the latter pointing towards distinct sorption mechanisms. The low historic application of simazine contrasted by the high abundance of its residues, and the co-occurrence with AT residues suggests the post-ban application of AT and SIM banned triazines as a permitted impurity of TBA formulations as a recent, secondary source. The present data indicate that topsoils do not contain abundant extractable residues of banned parent chlorotriazines, and are thus likely not the current source for related ground-and surface water contamination. In contrast, topsoils might pose a long-term source of TBA and CF transformation products for ground and surface water contamination.
Links
GA15-20065S, research and development project |
| ||
LM2015051, research and development project |
| ||
LO1214, research and development project |
|