J 2017

SL(2,Z) invariant rotating (m,n) strings in AdS3×S3 with mixed flux

KLUSOŇ, Josef, Malak KHOUCHEN, Sorna PRAVA BARIK and Kamal PANIGRAHI

Basic information

Original name

SL(2,Z) invariant rotating (m,n) strings in AdS3×S3 with mixed flux

Authors

KLUSOŇ, Josef (203 Czech Republic, guarantor, belonging to the institution), Malak KHOUCHEN (422 Lebanon, belonging to the institution), Sorna PRAVA BARIK (356 India) and Kamal PANIGRAHI (356 India)

Edition

The European Physical Journal C, New York, Springer, 2017, 1434-6044

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10303 Particles and field physics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 5.172

RIV identification code

RIV/00216224:14310/17:00095563

Organization unit

Faculty of Science

UT WoS

000401010200003

Keywords (in Czech)

SL(2Z) dualita; fundamentální struna

Keywords in English

SL(2Z)-duality; fundamental string

Tags

Tags

International impact, Reviewed
Změněno: 11/4/2018 22:29, Ing. Nicole Zrilić

Abstract

V originále

We study rigidly rotating and pulsating (m, n) strings in AdS(3) x S-3 with mixed three form flux. The AdS(3) x S-3 background with mixed three form flux is obtained in the near horizon limit of SL(2, Z)-transformed solution, corresponding to the bound state of NS5-branes and fundamental strings. We study the probe (m, n)-string in this background by solving the manifest SL(2, Z)-covariant form of the action. We find the dyonic giant magnon and single spike solutions corresponding to the equations of motion of a probe string in this background and find various relationships among the conserved charges. We further study a class of pulsating (m, n) string in AdS(3) with mixed three form flux.

In Czech

Studujeme rotující a pulsující (m,n) strunu na pozadí AdS(3)xS(3) se smýšenými toky. Najdeme řešení odpovídající dyonovému magnonu. Dále studujeme více komplikovaná řešení.

Links

GBP201/12/G028, research and development project
Name: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku
Investor: Czech Science Foundation