KOBAYASHI, Sumire, Zdeněk BONAVENTURA, Fabien THOLIN, Nikolay A POPOV a Anne BOURDON. Study of nanosecond discharges in H-2-air mixtures at atmospheric pressure for plasma assisted combustion applications. Plasma Sources Science and Technology. Bristol: IOP Publishing Ltd., 2017, roč. 26, č. 7, s. nestránkováno, 12 s. ISSN 0963-0252. Dostupné z: https://dx.doi.org/10.1088/1361-6595/aa729a.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Study of nanosecond discharges in H-2-air mixtures at atmospheric pressure for plasma assisted combustion applications
Autoři KOBAYASHI, Sumire (392 Japonsko), Zdeněk BONAVENTURA (203 Česká republika, garant, domácí), Fabien THOLIN (250 Francie), Nikolay A POPOV (643 Rusko) a Anne BOURDON (250 Francie).
Vydání Plasma Sources Science and Technology, Bristol, IOP Publishing Ltd. 2017, 0963-0252.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10305 Fluids and plasma physics
Stát vydavatele Velká Británie a Severní Irsko
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 3.939
Kód RIV RIV/00216224:14310/17:00095569
Organizační jednotka Přírodovědecká fakulta
Doi http://dx.doi.org/10.1088/1361-6595/aa729a
UT WoS 000403652400002
Klíčová slova anglicky nanosecond pulsed discharge at atmospheric pressure; streamer and nanosecond spark regimes; fast gas heating processes; nonequilibrium kinetics of reactive mixtures
Štítky NZ, rivok
Změnil Změnila: Ing. Nicole Zrilić, učo 240776. Změněno: 12. 4. 2018 09:13.
Anotace
This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2–air mixtures defined by their equivalence ratios phgr (i.e. $\phi =0$, air, $\phi =0.3$, lean mixture, $\phi =1$, stoichiometric mixture and $\phi =1.5$, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2–air mixtures with $\phi \in [0,1.5]$. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non-uniform distributions of radical densities and gas temperature obtained after the nanosecond voltage pulse provide accurate initial conditions for 2D reactive flow codes to study the combustion ignition on longer timescales and compare with experiments.
Návaznosti
GA15-04023S, projekt VaVNázev: Pokročilý výzkum kinetických procesů ve streamerových výbojích
Investor: Grantová agentura ČR, Pokročilý výzkum kinetických procesů ve streamerových výbojích
LO1411, projekt VaVNázev: Rozvoj centra pro nízkonákladové plazmové a nanotechnologické povrchové úpravy (Akronym: CEPLANT plus)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Rozvoj centra pro nízkonákladové plazmové a nanotechnologické povrchové úpravy
VytisknoutZobrazeno: 25. 4. 2024 12:49