ZIETLOW, Peter, Tobias BEIRAU, Boriana MIHAILOVA, Lee GROAT, Thomas CHUDY, Anna SHELYUG, Alexandra NAVROTSKY, Rodney EWING, Jochen SCHLUTER, Radek ŠKODA and Ullrich BISMAYER. Thermal annealing of natural, radiation-damaged pyrochlore. ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS. BERLIN: WALTER DE GRUYTER GMBH, 2017, vol. 232, 1-3, p. 25-38. ISSN 2194-4946. Available from: https://dx.doi.org/10.1515/zkri-2016-1965.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Thermal annealing of natural, radiation-damaged pyrochlore
Authors ZIETLOW, Peter (276 Germany), Tobias BEIRAU (276 Germany), Boriana MIHAILOVA (643 Russian Federation), Lee GROAT (124 Canada), Thomas CHUDY (124 Canada), Anna SHELYUG (840 United States of America), Alexandra NAVROTSKY (840 United States of America), Rodney EWING (840 United States of America), Jochen SCHLUTER (276 Germany), Radek ŠKODA (203 Czech Republic, guarantor, belonging to the institution) and Ullrich BISMAYER (276 Germany).
Edition ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, BERLIN, WALTER DE GRUYTER GMBH, 2017, 2194-4946.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10504 Mineralogy
Country of publisher Germany
Confidentiality degree is not subject to a state or trade secret
Impact factor Impact factor: 1.263
RIV identification code RIV/00216224:14310/17:00100326
Organization unit Faculty of Science
Doi http://dx.doi.org/10.1515/zkri-2016-1965
UT WoS 000394243800004
Keywords in English actinide impurities; metamict; pyrochlore; radiation damage; Raman spectroscopy
Tags NZ, rivok
Tags International impact, Reviewed
Changed by Changed by: Ing. Nicole Zrilić, učo 240776. Changed: 12/4/2018 15:28.
Abstract
Radiation damage in minerals is caused by the a-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyro-chlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1 10(18) alpha-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6 10(18) dpg), and Blue River/Canada (10.5 wt% U, 115.4 10(18) dpg), are compared with a crystalline refer-ence pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 % and Miass 100 % according to XRD), as the recrystallization tem-perature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm(-1) are sensitive to radiation damageM. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A(2)B O-2 (7) oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd-2 Ti-2 O-7 single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm (1) divided by the sum of the integrated intensities of the bands between 810 and 860 cm(-1). The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short-(Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its initial state an amorphous X-ray diffraction pattern superimposed by weak Bragg-maxima that indicates the existence of ordered regions in a damaged matrix. In con-trast to the other studied pyrochlores, Raman spectra of the Blue River sample show the appearance of local modes above 560 K between 700 and 800 cm(-1) resulting from its high content of U and Ta impurities. DSC measurements confirmed the observed structural recovery upon anneal-ing. While the annealing-induced ordering of Panda Hill begins at a lower temperature (ca. 500 K) the recovery of the highly-damaged pyrochlore from Miass occurs at 800 K. The Blue-River pyrochlore shows a multi-step recovery which is similarly seen by XRD. Thermogravi-metry showed a continuous mass loss on heating for all radiation-damaged pyrochlores (Panda Hill ca. 1 %, Blue River ca. 1.5 %, Miass ca. 2.9 %).
Links
MUNI/A/1316/2015, interní kód MUName: Geologické, geodynamické a environmentální procesy východního okraje Českého masívu (Acronym: Geodyn)
Investor: Masaryk University, Category A
PrintDisplayed: 9/7/2024 11:40