J
2019
Benefits of functional PCA in the analysis of single-trial auditory evoked potentials
KOLÁČEK, Jan, Ondřej POKORA, Daniela KURUCZOVÁ a Tzai-Wen CHIU
Základní údaje
Originální název
Benefits of functional PCA in the analysis of single-trial auditory evoked potentials
Autoři
KOLÁČEK, Jan (203 Česká republika, garant, domácí),
Ondřej POKORA (203 Česká republika, domácí), Daniela KURUCZOVÁ (703 Slovensko, domácí) a Tzai-Wen CHIU (702 Singapur)
Vydání
Computational Statistics, Germany, Springer, 2019, 0943-4062
Další údaje
Typ výsledku
Článek v odborném periodiku
Obor
10103 Statistics and probability
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.744
Kód RIV
RIV/00216224:14310/19:00107161
Organizační jednotka
Přírodovědecká fakulta
Klíčová slova česky
funkcionální data, analýza hlavních komponent
Klíčová slova anglicky
Functional data; Principal component analysis; single-trial auditory response
Příznaky
Mezinárodní význam, Recenzováno
V originále
Evoked potentials reflect neural processing and are widely used to studying sensory perception. Here we applied a functional approach to studying single-trial auditory evoked potentials in the rat model of tinnitus, in which overdoses of salicylate are known to alter sound perception characteristically. Single-trial evoked potential integrals were generated with sound stimuli (tones and clicks) presented systematically over an intensity range and further assessed using the functional principal component analysis. Comparisons between the single-trial responses for each sound type and each treatment were done by inspecting the scores corresponding to the first two principal components. An analogous analysis was performed on the first derivative of the response functions. We conclude that the functional principal component analysis is capable of differentiating between the controls and salicylate treatments for each type of sound. It also well separates the response function for tones and clicks. The results of linear discriminant analysis show, that scores of the first two principal components are effective cluster predictors. However, the distinction is less pronounced in case the first derivative of the response.
Návaznosti
GA15-06991S, projekt VaV | Název: Analýza funkcionálních dat a související témata | Investor: Grantová agentura ČR, Analýza funkcionálních dat a související témata |
|
MUNI/A/1503/2018, interní kód MU | Název: Matematické statistické modelování 3 (Akronym: MaStaMo3) | Investor: Masarykova univerzita, Matematické statistické modelování 3, DO R. 2020_Kategorie A - Specifický výzkum - Studentské výzkumné projekty |
|
Zobrazeno: 16. 11. 2024 13:59