J 2019

Sampling-based Motion Planning for Tracking Evolution of Dynamic Tunnels in Molecular Dynamics Simulations

VONÁSEK, Vojtěch, Adam JURČÍK, Katarína FURMANOVÁ and Barbora KOZLÍKOVÁ

Basic information

Original name

Sampling-based Motion Planning for Tracking Evolution of Dynamic Tunnels in Molecular Dynamics Simulations

Authors

VONÁSEK, Vojtěch (203 Czech Republic, guarantor), Adam JURČÍK (203 Czech Republic, belonging to the institution), Katarína FURMANOVÁ (703 Slovakia, belonging to the institution) and Barbora KOZLÍKOVÁ (203 Czech Republic, belonging to the institution)

Edition

Journal of Intelligent & Robotic Systems, 2019, 0921-0296

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10200 1.2 Computer and information sciences

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 2.259

RIV identification code

RIV/00216224:14330/19:00107165

Organization unit

Faculty of Informatics

UT WoS

000459439400024

Keywords in English

Sampling-based motion planning;Rapidly exploring random tree;Protein tunnel detection

Tags

International impact, Reviewed
Změněno: 29/4/2019 17:20, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Proteins are involved in many biochemical processes. The behavior of proteins is highly influenced by the presence of internal void space, in literature denoted as tunnels or cavities. Tunnels are paths leading from an inner protein active site to its surface. The knowledge about tunnels and their evolution over time, captured in molecular dynamics simulations, provides an insight into important protein properties (e.g., their stability or activity). For each individual snapshot of molecular dynamics, tunnels can be detected using Voronoi diagrams and then aggregated over time to trace their behavior. However, this approach is suitable only when a given tunnel is detected in all snapshots of molecular dynamics. This is often not the case of traditionally used approaches to tunnel computation. When a tunnel becomes too narrow in a particular snapshot, the existing approaches cannot detect this case and the tunnel completely disappears from the results. On the other hand, this situation can be quite common as tunnels move, disappear and appear again, split, or merge. Therefore, in this paper we propose a method which enables to trace also tunnels in those missing snapshots. We call them dynamic tunnels and we use the sampling-based motion planning to compute them. The Rapidly Exploring Random Tree (RRT) algorithm is used to explore the void space in each frame of the protein dynamics. The void space is represented by a tree structure that is transferred to the next frame of the dynamics and updated to remove collisions and to cover newly emerged free regions of the void space. If the void space reaches the surface of the protein, a dynamic tunnel is reconstructed by tracking back in the tree towards a desired place (i.e., the active site). To efficiently sample the narrow void space inside proteins, a Voronoi diagram of the static protein frames is used. The results of the proposed method are demonstrated on an exemplary dataset obtained from the domain experts and the results are compared with the classic aggregation-based tunnel detection performed using the state-of-the-art CAVER 3.0 tool.

Links

GA17-07690S, research and development project
Name: Metody identifikace a vizualizace tunelů pro flexibilní ligandy v dynamických proteinech (Acronym: FLigComp)
Investor: Czech Science Foundation