Detailed Information on Publication Record
2018
Differential diagnosis of the small renal masses: role of the apparent diffusion coefficient of the diffusion-weighted MRI
MYTSYK, Yulian, Ihor DUTKA, Borys YURIY, Iryna MAKSYMOVYCH, Martin CAPRNDA et. al.Basic information
Original name
Differential diagnosis of the small renal masses: role of the apparent diffusion coefficient of the diffusion-weighted MRI
Authors
MYTSYK, Yulian (804 Ukraine, guarantor), Ihor DUTKA (804 Ukraine), Borys YURIY (804 Ukraine), Iryna MAKSYMOVYCH (804 Ukraine), Martin CAPRNDA (703 Slovakia), Katarina GAZDIKOVA (703 Slovakia), Luis RODRIGO (724 Spain), Peter KRUŽLIAK (703 Slovakia, belonging to the institution), Polina ILLJUK (804 Ukraine) and Ammad Ahmad FAROOQI (586 Pakistan)
Edition
International Urology and Nephrology, Dordrecht, Springer, 2018, 0301-1623
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
30217 Urology and nephrology
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 1.596
RIV identification code
RIV/00216224:14110/18:00102965
Organization unit
Faculty of Medicine
UT WoS
000425010000002
Keywords in English
Small renal masses; Renal cell carcinoma; MRI; Diffusion-weighted imaging; Apparent diffusion coefficient
Tags
International impact, Reviewed
Změněno: 9/2/2019 22:13, Soňa Böhmová
Abstract
V originále
Renal cell carcinoma (RCC) accounts for approximately 3% of adult malignancies and more than 90% of neoplasms arising from the kidney. Uninformative percutaneous kidney biopsies vary from 10 to 23%. As a result, 7.5-33.6% of partial nephrectomies in patients with small renal masses (SRM) are performed on benign renal tumors. The aim of this study was to assess the feasibility of the apparent diffusion coefficient (ADC) of the diffusion-weighted imaging (DWI) of MRI, as RCC imaging biomarker for differentiation of SRM. Adult patients (n = 158) with 170 SRM were enrolled into this study. The control group were healthy volunteers with normal clinical and radiologic findings (n = 15). All participants underwent MRI with DWI sequence included. Mean ADC values of solid RCC (1.65 +/- 0.38 x 10(-3) mm(2)/s) were lower than healthy renal parenchyma (2.47 +/- 0.12 x 10(-3) mm(2)/s, p < 0.05). There was no difference between mean ADC values of ccRCC, pRCC and chRCC (1.82 +/- 0.22 x 10(-3) vs 1.61 +/- 0.07 x 10(-3) vs 1.46 +/- 0.09 x 10(-3) mm(2)/s, respectively, p = ns). An inverse relationship between mean ADC values and Fuhrman grade of nuclear atypia of solid ccRCCs was observed: grade I-1.92 +/- 0.11 x 10(-3) mm(2)/s, grade II-1.84 +/- 0.14 x 10(-3) mm(2)/s, grade III-1.79 +/- 0.10 x 10(-3) mm(2)/s, grade IV-1.72 +/- 0.06 x 10(-3) mm(2)/s. This was significant (p < 0.05) only between tumors of I and IV grades. Significant difference (p < 0.05) between mean ADC values of solid RCCs, benign renal tumors and renal cysts was observed (1.65 +/- 0.38 x 10(-3) vs 2.23 +/- 0.18 x 10(-3) vs 3.15 +/- 0.51 x 10(-3) mm(2)/s, respectively). In addition, there was a significant difference (p < 0.05) in mean ADC values between benign cysts and cystic RCC (3.36 +/- 0.35 x 10(-3) vs 2.83 +/- 0.21 x 10(-3) mm(2)/s, respectively). ADC maps with b values of 0 and 800 s/mm(2) can be used as an imaging biomarker, to differentiate benign SRM from malignant SRM. Using ADC value threshold of 1.75 x 10(-3) mm(2)/s allows to differentiate solid RCC from solid benign kidney tumors with 91% sensitivity and 89% specificity; ADC value threshold of 2.96 x 10(-3) mm(2)/s distinguishes cystic RCC from benign renal cysts with 90% sensitivity and 88% specificity. However, the possibility of differentiation between ccRCC histologic subtypes and grades, utilizing ADC values, is limited.