
Machine Learning Fingerprinting Methods in Cyber

Security Domain: Which one to Use?

Martin Laštovička∗†, Antonı́n Dufka†, Jana Komárková∗†

∗Masaryk University, Institute of Computer Science, Brno, Czech Republic
†Masaryk University, Faculty of Informatics, Brno, Czech Republic

Email: {lastovicka|komarkova}@ics.muni.cz, xdufka1@fi.muni.cz

Abstract—Identification of a communicating device operating
system is a fundamental part of network situational awareness.
However, current networks are large and change often which
implies the need for a system that will be able to continuously
monitor the network and handle changes in identified operating
systems. The aim of this paper is to compare machine learning
methods performance for OS fingerprinting on real-world data
in the terms of processing time, memory requirements, and
performance measures of accuracy, precision, and recall.

Index Terms—Machine Learning, OS Fingerprinting, IPFIX,
Cybersecurity

I. INTRODUCTION

The knowledge and understanding of the current situation

in a network are required to protect the network against threats

effectively [1]. Building cyber situational awareness (CSA) is

a multi-stage process starting with network asset enumeration

and comprehension of the systems in use. However, it is not

enough to achieve this goal only once; we need to maintain in

throughout time and update it with the changes that inevitably

arise in each network.

The first step in CSA asset enumeration is determining

the operating system of each active device. This task is

particularly challenging in a vast dynamic network where

devices connect and disconnect freely. In such environment,

an active probing of devices is useless as devices behind an

IP address change every few minutes at irregular intervals.

Hence, the OS identification must work passively on captured

network traces.

To monitor large networks, network flow [2] is currently

the most preferred technology. It reduces the monitoring to

the packet headers which are aggregated into the final flows.

This approach enables monitoring of backbone networks, but

the reduced visibility may pose a challenge for established

OS fingerprinting methods as the required data might be

unavailable. Matousek et al. [3] adapted the OS fingerprinting

to the notion of network flow technology and Lastovicka et

al. [4] showed the flow-based fingerprinting to be usable in

large dynamic networks.

Passive OS fingerprinting methods usually rely on prede-

fined fingerprint database. Such database is filled by finger-

prints created manually by experts, based on statistical analysis

of traces, or by collecting fingerprints from community volun-

teers (e.g., p0f). Each of the methods maintainability suffers

as new systems are introduced much faster than the databases

are updated. To solve this issue, machine learning algorithms

were introduced [5] and further explored in the large-scale

scenario by Richardson et al. [6].

When developing the machine learning methods, the authors

usually focus on measures such as accuracy, precision, recall

and test their methods on data from small controlled networks.

However, the real network traffic is different in the number and

diversity of operating systems, and the data volume is much

higher. These network properties make many of the methods

to remain prototypes unusable in practical deployment.

In this paper, we test the usability of four selected machine

learning algorithms for OS fingerprinting of devices in a large

network. We have collected network flows from a week of uni-

versity wireless network traffic and paired them with operating

system ground truth from DHCP and Radius servers’ logs.

On this dataset, we tested all methods focusing on their time

and memory requirements while processing a large amount of

data. We then combine this results with traditional accuracy

metrics to select the method best suited for continuous network

monitoring and OS fingerprinting.

The rest of this paper is structured as follows. Section II

describes the selected ML methods together with the exper-

iment settings and parameter optimisation. In Section III we

describe the collected dataset and its usage in ML algorithms

and Section IV presents the results of our measurements. We

finish the paper with our lessons learned and an overview of

similar work in Sections V and VI, followed by a conclusion.

II. METHODOLOGY

Our OS fingerprinting methodology is based on identifying

a specific combination of TCP/IP packets parameters settings,

whose default values are dependent solely on the OS kernel

and typically differ among kernel implementations. To work

with network flows, we chose three parameters that can be

transformed from single packet observation to flow while

the parameters are still sufficiently distinguishing for OS

fingerprinting. The selected features are:

1) IP Time to Live (TTL) – Field specified by Internet

protocol, whose value determines at most how many

nodes can process the packet, before it shall be dropped.

The initial value is set by the OS of the transmitting side,

so it can be used as a factor in OS identification.

2) TCP Window Size – TCP Window Size is a TCP field

specifies the number of bytes the receiver is currently



willing to receive, and its initial value is dependent on

the OS settings.

3) Size of the initial SYN packet – The first packet in a

TCP connection is a TCP SYN packet, which does not

transfer any actual user-data, but is a necessary part of

establishment of TCP connection. Its size varies among

different operating systems, so we use this value as

another source of information for the classification.

We avoided using parameters that are often used but which

can depend on transmitted data (e.g., checksum, destination

port) or network properties (e.g., MSS) [6] as they can

influence the fingerprinting by other characteristics than OS

kernel.

A. Machine Learning Methods

Based on the survey on machine learning methods for

intrusion detection [7], we have selected four supervised

classification algorithms with perspective time complexities

which could be suitable for processing a large amount of

network data.

1) Naı̈ve Bayes: Naı̈ve Bayes [8] is a classifier based on

Bayes’ theorem with an assumption of stochastic indepen-

dence of given classes. The assumption is usually unrealistic

in real-world usage. However, as shown in [8], it yields good

results in many cases.

Fitting phase consists of analysing the training data and

estimating posterior probabilities for individual classes, which

are required for the Bayes formula. When trying to classify an

unknown sample, the Naı̈ve Bayes classifier uses previously

estimated prior probabilities to compute probability, that the

sample belongs to a given class. The final class is chosen as

the one with the highest probability.

2) Decision Tree: A decision tree classifier [9] is based

on recursive partitioning of the feature space and forming a

tree-like structure, which holds the rules for deciding to which

partition given sample belongs.

The fitting algorithm builds this tree-like structure. Every

training sample corresponds to a certain point in feature

space. The algorithm tries to find a hyperplane separating

these samples into two half-spaces in such a way, that the

information gain of this split is maximised. This step is

recursively applied to the half-spaces, until all training samples

are correctly classified, or the tree reaches its recursion limit.

The algorithm has to traverse the tree from root to leaf in

order to classify a sample. For each inner node, the algorithm

inspects a decision rule contained in the node and based on this

rule decides which node will be the next. Once the algorithm

reaches a leaf node, it finishes and reports the class found in

the final node.

3) k-Nearest Neighbors: k-nearest neighbors (k-NN) [10]

is a clustering classifier. The principle behind this method

is to find k closest training samples and based on their

classes predict one of the unknown samples. k-NN is an

example of a non-generalizing method, which means that the

classifier has to keep all the training data and that impacts

its memory requirements. Parameter k determines how many

nearest neighbours are going to be searched for during the

classification phase. This parameter can be subjected to hyper-

parameter optimisation to find its optimal value for the data.

The distance of elements is computed concerning the se-

lected metric. Metric corresponds to a formula, which given

two points in vector space returns a non-negative number (their

distance). Commonly used metrics are Euclidean distance and

Manhattan distance [10].

4) Support Vector Machine: Support vector machine

(SVM) [11] is a binary classifier but can also be extended for

multi-class classification. To do so, we use ”One-against-all”

method which trains one classifier per class to distinguish the

class against the rest of the classes. Each of those classifiers

is used during classification, and the resulting class is the one,

whose classifier had the highest confidence score.

Training algorithm finds a hyperplane, that is dividing the

training samples into two groups, with respect to their classes.

The hyperplane is selected so that it maximises its minimal

distance from the samples. By utilising kernel methods, the

SVM can fit more complex patterns, than just a linearly

separable data. It allows to map an input vector into higher

dimensional spaces, and the hyperplane in those spaces can

represent a more complex pattern when projected back into the

original feature space. When classifying an unknown sample,

trained SVM classifier finds out on which side of the boundary

is the given sample and returns corresponding class.

Parameter C affects the penalty for wrongly assigned train-

ing sample. It affects the bias-variance trade-off. The higher

the value of C, the more significant the penalty will be, which

will result in overfitting. On the other hand, a too low value

of C causes the boundary to be very simple which results in

low accuracy.

B. Experiment Settings

The machine used for all the measurements has Intel R©

CoreTM i5-4670 CPU and 16GB DDR3 RAM. In this section,

we describe the used software and experiment setup.

1) Scikit-learn: Scikit-learn [12] is a popular machine

learning library for Python, which provides consistent high-

level API for efficient machine learning algorithms. All the

selected methods use implementation from the library.

2) Data Processing Pipeline: Network flows from the

dataset (described in detail in Section III) were stored in CSV

file. Each record contained four values: OS, TCP window size,

TCP syn size, and TCP TTL. These records were loaded into

Pandas DataFrame, which is a memory-efficient tabular data

storage suitable for Scikit-learn algorithms. Dataframe was

split into labels (OS) and features (the other three values) and

in this form passed to the classifiers.

3) Measurement: The measurement focused on both time

and memory requirements of the algorithms. Time and mem-

ory were measured in separate runs, so their measurements

did not interfere.

The execution time of the algorithm was measured using

python time() function. After training data and all python

modules were loaded, the current timestamp was captured, and



then the algorithm was started. When it finished, the starting

time was subtracted from the current time, and this value was

stored as a measurement of the time required to execute given

algorithm on the specific dataset.

Memory measurement was based on querying operating

system on how much memory is being used by the process

during its execution. Like in time measurement, when every-

thing necessary was prepared, OS was queried for how much

memory is currently being used by the process, so that we

can subtract this value and get just the memory used by the

algorithm. During execution of the algorithm, the OS was

periodically queried, and when it fished, the initial memory

was subtracted from the maximal measured value, and the

resulting value was stored.

Since both time and memory measurements are affected by

minor deviations, most of the measurements were repeated 20

times, and the results were averaged. The measurements were

performed with fewer repetitions when the number of samples

used for measuring exceeded one million.

4) Learning and Hyperparameter Optimisation: Parametric

classifiers had their parameter values chosen from individual

sets of perspective values. Corresponding classifiers were then

trained on a validation set with 106 samples for every com-

bination of these parameter values. The combination, which

yielded the best values of accuracy, recall and precision, was

used in the experiment.

For the optimisation of k-nearest neighbours methods,

parameters of the number of neighbours k, the weight of

neighbours, and distance of neighbors were selected. The

available values settings for k is an integer from the range

[0, 15], weight could be uniform or inversion of distance, and

the distance metric could be Euclidean or Manhattan. Most

of these combinations yielded similar accuracy, but the most

promising results were obtained by selecting the value k = 3
with uniform weight and Euclidean metric.

Support vector machine has two parameters for optimiza-

tion, penalty parameter C and kernel type. C was chosen

from the range [0; 10] with step of 0.03. Possible values for

kernel can be chosen as radial basis function (also known as

Gaussian), or linear. With the increasing value of C parameter,

the accuracy grows but the recall decreases. The value C = 1
and ”radial basis function” kernel was chosen as a compromise

between precision and recall.

Decision tree and Naı̈ve Bayes methods were run in the

Scikit-learn default settings.

III. DATASET

Data for our experiments were collected using extended

network flows. Our monitoring probes were located at the

backbone links connecting the university to the Internet. For

OS fingerprinting, we filtered the flows so that only flows with

the source IP address from our wireless subnets (university

Eduroam network) remained. Following this procedure, we

limited the dataset size (traffic from the outside is irrelevant

for fingerprinting of devices in our network) and focused only

on the interesting samples of a real dynamic network.

The network flows were extended by fields necessary for

OS fingerprint. TCP SYN size, TTL, and TCP win size were

measured from the first packet of TCP connection (and hence

first packet of network flow). We round the value of TTL to

the next higher power of two to eliminate the influence of

observation point location [13]. These values were assigned

for the whole flow and exported using IPFIX protocol [14].

The ground truth values for OS fingerprinting were estab-

lished by pairing each flow with corresponding wi-fi session.

In our network, each wireless connection is authenticated,

and we can access logs from DHCP and Radius servers.

We mapped device names from these logs to current oper-

ating systems. In many modern devices, changing the device

name is very hard for the user or even disallowed and the

device manufacturers usually use an easily distinguishable

default name (e.g., android-<ID>, <user>-iPhone, Windows-

Phone). Hence, we consider this approach reasonably accurate

as we want to keep the network open for any device, which

results in a more diverse dataset.

We collected the data during the first week of May 2017

and it contains traffic traces of 25 642 unique devices (i.e.,

unique MAC addresses) from 21 746 unique user accounts and

they produced 79 087 345 extended network flows. The whole

anonymised dataset is publicly available on Github1.

A. Dataset Modifications for Testing

The OS fingerprinting methods rely on the processing of

TCP/IP parameters of each flow. As the dataset covers real

traffic traces, the parameters naturally cannot be present in

a significant portion of the flows (i.e., UDP, ICMP traffic).

Similarly, some TCP flows do not contain parameters of the

initial packet of the connection as the communication can be

split into multiple network flows. Such flows are then unusable

for selected OS fingerprinting methods and were removed

from the dataset before testing. Following this procedure, we

reduced the dataset to 13 660 089 network flows, where each

contains all parameters needed and has ground truth value

established. Then, we split the dataset into three smaller parts –

training, validation, and test dataset.

The test dataset is the largest, containing 80 % of the

samples. The remaining 20 % was evenly split between the

two other sets. The splitting was done cautiously so that

the individual parts preserve the same ratio of class distri-

bution. Explicitly, the class distribution of the original set was

computed. This value was used afterwards to determine the

number of elements in each class of the new dataset. Then the

individual records from the original dataset were sequentially

inspected, and if there was still space in the new dataset for

an element of corresponding class, it was added. If not, it

was added to another dataset, that could be used for further

splitting without having overlapping elements.

At the end of the data preparation, we had test dataset

containing over 10 million samples, validation dataset with

over 1 million samples and training dataset, again, with over

1 million samples, all of which had the same class distribution.

1https://github.com/CSIRT-MU/PassiveOSFingerprint/tree/master/Dataset



IV. RESULTS

In this section, we present results of our performance

measurements concerning the time and memory needed for

training and classification.

A. Time

The time requirements on selected methods can be di-

vided into two areas, the training time and classification

time. Decision tree and Naı̈ve Bayes achieved by far the

best results. Their training time on 1 million samples was

less than 1 second. Fitting of SVM classifier requires more

complex computations which is reflected in results – with

1 million samples the time almost reached 5 minutes. k-nearest

neighbours classifier was the slowest one to fit. It needed

almost 15 minutes for fitting 1 million samples and continued

to grow rapidly with additional samples.

The more important measure for practical use is the time

it takes for a fitted classifier to classify a large number of

samples. The complexity of the fitted classifier (how many

samples it was fit on) did not profoundly affect classification

times of Decision Tree, nor Naı̈ve Bayes. On the other hand, its

impact was significant on both SVM and k-nearest neighbours.

Classification of 1 million samples by classifier fitted on one

million samples was slower by 15.8% for decision tree, by

0.9% for Naı̈ve Bayes, by 8 668% for SVM, and by 14 288%
for k-NN than of the same classifier trained on 10 000 samples.

Detailed view of this dependency can be found in Table I.

These results show that SVM and k-NN methods are prone

to building over-complicated models and their training phase

should be treated carefully.

B. Memory

Similarly to the time, we measured memory consumption

during fitting and then during classification. SVM classifier

required the most memory for training, on 1 million samples

it needed 429MB. The other three classifiers ended up with

requirements on 1 million samples around 40MB of used

memory. The complexity of the classifier did not significantly

affect memory requirements of classification algorithms; the

most significant difference was of Naı̈ve Bayes, which got an

increase of 33 % between the classifier trained on 100 samples

and the one trained on 100 000 samples.

Overall, the memory consumption depended mainly on the

number of classified samples. Fig. 1 shows the amount of

memory used while classifying a certain number of samples

by classifiers trained on 100 000 samples. These measurements

show just the additional memory used by classification algo-

rithm, the memory needed for storing the trained classifier is

a constant overhead, which can be neglected in comparison of

memory dependency on the number of classified samples.

C. Accuracy, Precision, Recall

Accuracy, Precision, and Recall were calculated as an

average value of the specific measure predictions over the

classification dataset of classifier fitted on 100 000 training

samples. Precision and Recall of individual classes were

0

20

40

60

80

100

120

0 200000 400000 600000 800000 1000000

M
em

o
ry

 [
M

B
]

Number of classified flows

k-NN

Naïve Bayes

Decision tree

SVM

Fig. 1. Memory consumption of methods trained on 100 000 samples

0%

20%

40%

60%

80%

100%

Naïve Bayes Decision tree SVM k-NN

Accuracy
Precision
Recall
f-score

Fig. 2. Performance measures

combined using the macro-averaging method according to

Sokolova et al. [15].

With the increasing number of training samples, classifiers

were able to increase accuracy, though not significantly. After

a certain point k-NN, decision tree and SVM stabilised on

0.975, while Naı̈ve Bayes on 0.818. Detailed values are listed

in Table II and their visual comparison is depicted in Fig. 2.

The other performance measures show only minor differ-

ences between the methods. Unlike accuracy, precision and

recall are not influenced by a large number of true negatives

(which are typical for multi-class classification) and point out

inefficiency in the identification of specific classes. The dataset

contained many samples that were from different classes, yet

had the same values of features. Therefore classifiers could

not correctly classify many of such samples. That is apparent

from recall which values ranged around 60 % for each method.

V. LESSONS LEARNED AND DISCUSSION

When deciding which ML method to use, the goal is

to pick the one, that can perform well on given data (has

good accuracy, precision and recall) and requires a reasonable

amount of resources to classify samples.

Memory requirements were not exceptionally large by any

algorithm for fitting, nor classification. Modern computers

usually have way more resources than were needed; therefore

these criteria should not be the primary factor in deciding

which method to use.

SVM, k-NN and decision tree had satisfiable accuracy and

similar values of precision and recall, so if we were to consider



TABLE I
CLASSIFICATION TIME DEPENDENCY ON THE CLASSIFIER COMPLEXITY (IN SECONDS)

Training dataset size 10k 100k 1M
Classified samples 10k 100k 1M 10k 100k 1M 10k 100k 1M

Naı̈ve Bayes 0.0012 0.0111 0.2299 0.0012 0.0112 0.2304 0.0012 0.0112 0.2319
Decision tree 0.0004 0.0042 0.0759 0.0005 0.0049 0.0828 0.0005 0.0051 0.0876
SVM 0.3745 3.7790 37.976 3.4075 34.463 345.04 33.759 330.31 3330.0
k-NN 0.2981 3.0093 30.392 2.5196 25.730 252.31 42.652 417.67 4372.9

TABLE II
MULTICLASS CLASSIFIER PERFORMANCE MEASURES

Accuracy Precision Recall F-score

Naı̈ve Bayes 0.8176 0.6830 0.6017 0.6398
Decision tree 0.9757 0.6887 0.5998 0.6412
SVM 0.9756 0.6886 0.5994 0.6409
k-NN 0.9755 0.6760 0.5990 0.6352

just these criteria, these methods would be almost equivalent.

Thus the main deciding point will be their classification time.

In case we had a small amount of fine picked training

samples, the SVM and k-NN could be used well. However,

those methods become quite time-consuming as the number

of training samples rises. Classification time of decision tree

classifier, on the other hand, is not significantly affected by the

number of training samples and therefore appears to be the best

choice (of the investigated classifiers) for OS fingerprinting.

VI. RELATED WORK

The research focused on OS fingerprinting is mostly focused

on developing new methods with high accuracy. As far as

we are aware no work focuses on performance benchmarking

of OS fingerprinting methods on large datasets. However, the

related field of application fingerprinting has several works

that consider not only accuracy but also computational perfor-

mance. In this section we present relevant papers on OS and

application fingerprinting.

Lippmann et al. [13] propose a new approach for passive OS

fingerprinting using TCP/IP packet header information, such

as TCP window size, IP time to live, TCP max segment size,

IP dont fragment, TCP selective acknowledgements options

flag, packet size, and SYN and SYN-ACK packet flags. They

tested several machine learning algorithms including support

vector machines, nearest neighbours, binary tree classifier and

multi-level perceptron. They achieve 10 % error rate without

rejection when considering nine classes of OS. They conclude

that the low error rate can be achieved only by decreasing the

total number of classes.

Al-Shehari and Shahzad [16] use combination of pattern

matching methods and machine learning to detect OS from

network traffic. They analyse TCP/IP headers such as time to

live, window size, don’t fragment bit, and TCP options/flags.

They correlate the packets from the same TCP/IP session

mainly the three-way handshake with session termination.

Moreover, their method can be used even with SSL commu-

nication. For evaluation of their approach, only the accuracy

is considered, which is around 90 %.

Este et al. [17] apply SVM on the classification of L7

protocol based on flow data. They evaluate their approach on

datasets labelled based on port number pre-classifier, achieving

accuracy over 90 %. They theoretically discuss the learning

and classification time complexity.

Li et al. [18] uses flow data for application fingerprinting.

They distinguish the traffic into classes based on the type of

communication, such as mail, p2p, VoIP, games, database, etc.

They try several approaches, ranging from machine learning

to packet inspection, and evaluate their accuracy as well as

performance benchmarks. They compare the stability of the

approach, using the trained method on different time windows

in the same network and the same time window in different

networks. The packet inspection based algorithms prove not

very robust in time.

Williams et al. [19] compare several machine learning

techniques for L7 protocol identification from flows. They

compare nave Bayes, C4.5 decision tree, Bayesian network

and nave Bayes tree algorithms. They focus on exploring the

effect of feature reduction on accuracy a computation and they

conclude that the feature set can be significantly reduced with

a minimal decrease in classification accuracy.

Soysal et al [20] investigates three flow-based traffic classifi-

cation methods based on supervised machine learning, namely

Bayesian networks, decision trees and multilayer perceptrons.

The methods are evaluated based on performance metrics of

correctness and computational cost (model build time and

classification rate). They distinguish six types of network

traffic: HTTP, Akamai, FTP, DNS, SMTP, and P2P. They

explore the effects of training dataset size on the accuracy

of each method.

Lee at al. [21] introduces internet traffic classification

benchmark tool, NeTraMark. Its purpose is to enable easy

objective comparison of various machine learning approaches

to application classification. The tool automatically compares

per-trace accuracy (overall accuracy), per-application accuracy

(precision, recall, and f-measure), and computational perfor-

mance (learning time and classification time). The benchmark

tool follows six design guidelines: comparability, reproducibil-

ity, efficiency, extensibility, synergy, and flexibility/ease-of-

use. The tool already includes eleven state-of-the-art traffic

classifiers and several projects consisting of datasets and

benchmarks for those datasets.

Nguyen and Armitage [22] survey general machine learn-

ing usage for IP traffic classification. They review the most

significant works published on traffic classification based on

machine learning. They discuss the key requirements for the



employment of machine learning based traffic classifiers in

operational IP networks and summarise to which extent are

the requirements met in each work.

VII. CONCLUSION

In this work, we have selected four machine learning

algorithms and tested their usability for OS fingerprinting of

real-world network flow data. We have collected a large dataset

of traces from a wireless network, where users can bring

and connect an arbitrary device with generally no regulations.

We have published the anonymised version of the dataset for

public use as we think such data is quite uncommon in the

research community.

The goal of the methods performance testing was to find

out, which one is the best for deployment and processing of

data from a high-speed network. The most critical parameter

is the ability to process a batch of data before next batch

arrives. We measured classification time of each method with

different settings of training data and the Naı̈ve Bayes and

Decision tree methods outperformed the others (SVM, k-NN)

by several orders of magnitude. In our next measurement, we

focused on the memory consumption of each method, which

showed considerable differences between the methods, but

each of them could work within the memory of nowadays

cheap mobile phones. Hence, we conclude the memory is

not a limiting factor for any of the methods. Finally, the

popular measures of accuracy, precision, recall, and f-score

were calculated for each method. Our results show there are

no significant differences except for slightly low accuracy of

Naı̈ve Bayes. Otherwise, the methods are comparable to each

other.

Decision tree method decidedly outperformed other

methods and proved itself to be the most suitable for flow-

based OS fingerprinting. Accuracy measures and memory

consumption are comparable to others, but training and clas-

sification times make the difference.

Our next research in the field of OS fingerprinting will

tackle the usage of new network protocols which introduce

new features and shift the meaning of the current ones.

Specifically, deployment of IPv6 protocol changes the seman-

tics of Time to Live (called Hop Limit) and packet Total

Length (renamed to Payload Length), and hence, those features

need to be investigated whether they are still usable for OS

fingerprinting. Similarly, QUIC protocol by Google is gaining

more traffic share nowadays, and features of this protocol need

to be discovered as it moves the traffic to UDP connections.

ACKNOWLEDGEMENT

This research was supported by the Security Research

Programme of the Czech Republic 2015 - 2020 (BV III /

1 VS) granted by the Ministry of the Interior of the Czech

Republic under No. VI20172020070 Research of Tools for

Cyber Situation Awareness and Decision Support of CSIRT

Teams in the Protection of Critical Infrastructure.

Martin Laštovička is Brno Ph.D. Talent Scholarship Holder

– Funded by the Brno City Municipality.

REFERENCES

[1] A. Kott, C. Wang, and R. F. Erbacher, Cyber Defense and Situational

Awareness. Springer, 2014, ISBN: 978-3-319-11390-6.
[2] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,

and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis With NetFlow and IPFIX,” IEEE Communications Surveys

Tutorials, vol. 16, no. 4, pp. 2037–2064, Fourthquarter 2014.
[3] P. Matoušek, O. Ryšavỳ, M. Grégr, and M. Vymlátil, “Towards identi-

fication of operating systems from the internet traffic: Ipfix monitoring
with fingerprinting and clustering,” in Data Communication Networking

(DCNET), 2014 5th International Conference on. IEEE, 2014, pp. 1–7.
[4] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky, “Pas-

sive OS Fingerprinting Methods in the Jungle of Wireless Networks,” in
Network Operations and Management Symposium (NOMS), 2018 IEEE.

[5] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang, D. Song,
and A. Blum, “Fig: Automatic fingerprint generation,” Department of

Electrical and Computing Engineering, p. 27, 2007.
[6] D. W. Richardson, S. D. Gribble, and T. Kohno, “The limits of automatic

os fingerprint generation,” in Proceedings of the 3rd ACM workshop on

Artificial intelligence and security. ACM, 2010, pp. 24–34.
[7] A. L. Buczak and E. Guven, “A survey of data mining and machine

learning methods for cyber security intrusion detection,” IEEE Commu-

nications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.
[8] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001

workshop on empirical methods in artificial intelligence, vol. 3, no. 22.
IBM, 2001, pp. 41–46.

[9] W.-Y. Loh, “Classification and regression trees,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14–
23, 2011.

[10] S. Marsland, Machine learning: an algorithmic perspective. CRC press,
2015.

[11] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning

Research, vol. 12, no. Oct, pp. 2825–2830, 2011.
[13] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein, “Passive

operating system identification from tcp/ip packet headers,” in Workshop

on Data Mining for Computer Security, 2003, p. 40.
[14] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP Flow

Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation,” Internet Engineering Task Force, 2013.

[15] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Information Processing & Manage-

ment, vol. 45, no. 4, pp. 427–437, 2009.
[16] T. Al-Shehari and F. Shahzad, “Improving operating system finger-

printing using machine learning techniques,” International Journal of

Computer Theory and Engineering, vol. 6, no. 1, p. 57, 2014.
[17] A. Este, F. Gringoli, and L. Salgarelli, “Support vector machines for tcp

traffic classification,” Computer Networks, vol. 53, no. 14, pp. 2476–
2490, 2009.

[18] W. Li, M. Canini, A. W. Moore, and R. Bolla, “Efficient application
identification and the temporal and spatial stability of classification
schema,” Computer Networks, vol. 53, no. 6, pp. 790–809, 2009.

[19] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical ip traffic
flow classification,” ACM SIGCOMM Computer Communication Review,
vol. 36, no. 5, pp. 5–16, 2006.

[20] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate
flow-based network traffic classification: Evaluation and comparison,”
Performance Evaluation, vol. 67, no. 6, pp. 451–467, 2010.

[21] S. Lee, H. Kim, D. Barman, S. Lee, C.-k. Kim, T. Kwon, and
Y. Choi, “Netramark: a network traffic classification benchmark,” ACM

SIGCOMM Computer Communication Review, vol. 41, no. 1, pp. 22–30,
2011.

[22] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications

Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.


