
Rapid Prototyping of Flow-Based Detection
Methods Using Complex Event Processing

Petr Velan, Martin Husák, Daniel Tovarňák
Institute of Computer Science

Masaryk University
Brno, Czech Republic

{velan, husakm, tovarnak}@ics.muni.cz

Abstract—Detection of network attacks is the first step to
network security. Many different methods for attack detection
were proposed in the past. However, descriptions of these methods
are often not complete and it is difficult to verify that the
actual implementation matches the description. In this demo
paper, we propose to use Complex Event Processing (CEP) for
developing detection methods based on network flows. By writing
the detection methods in an Event Processing Language (EPL),
we can address the above-mentioned problems. The SQL-like
syntax of most EPLs is easily readable so the detection method
is self-documented. Moreover, it is directly executable in the CEP
system, which eliminates inconsistencies between documentation
and implementation. The demo will show a running example of
a multi-stage HTTP brute force attack detection using Esper and
its EPL.

I. INTRODUCTION

Most of the current implementations of attack detection
methods are written in a programming language. However,
it is a difficult task to verify that the implementation was
done correctly. It requires a series of tests and even then the
tests themselves might be incomplete. Basically, there is no
simple way to verify, that the implementation matches the
requirements and the description of the given method. Another
approach can be used to ensure more “what you see is what
you get” result. For example, the widely known NfSen tool
has a feature to trigger alerts based on filters. The filter can be
a simple query to the underlying flow database, which is easy
to read and understand. However, the attack detection methods
that can be described in this way is very limited due to the
limited power of the filter queries.

The Complex Event Processing (CEP) [1] provide much
greater variability than the NfSen filters. The Event Processing
Languages (EPL) often build upon SQL standard and enhance
it for work with streams of data and time intervals. Moreover,
it is possible to easily chain multiple EPL queries to build
more complex detection methods if necessary.

The goal of this demo is to show that using EPL for
detection methods provides two major benefits: Firstly, it
facilitates rapid development of detection methods. Secondly,
it allows us easily read and verify what the method does. In
this demo, we are going to present a detection method for
HTTP brute force attacks, as described in [2].

II. DEMO COMPONENTS

The source of data for our detection method is network flow
monitoring [3]. The flow records are enhanced by information
from the application layer and are exported in the IPFIX [4]
format to a collector. The collector passes the data to the CEP
engine, which processes it based on the EPL description of the
detection method. The overview of the architecture is shown
in Figure 1.

Flow collector

Esper engine Database

Flow probe
Packets

Flows

Flows

(IPFIX)

(JSON)

Results
(JSON)

Fig. 1. Demo Architecture Schema

The only requirement on the flow source in our demo is
that it must be able to provide host and URL information from
HTTP requests. We use Flowmon probe1 to generate flows one
and replay the data in a loop during the demo.

The purpose of the flow collector in this scenario is to
receive flow data, convert them and send them to the CEP
engine. We use JSON as a universal data exchange format be-
tween the flow collector and the CEP engine. The performance
of this solution is good enough to handle several thousand flow
records per second, which is sufficient to handle the flows from
entire campus network of Masaryk University. Should the need
arise, a more compact data format could be used to increase
the performance. Moreover, with some additional work, it is
possible to design the CEP engine to process flows directly.
We use IPFIXcol [5] flow collector in our demo.

From a historical perspective, traditional Database Man-
agement Systems (DBMSs) oriented on data sets were not
designed for rapid and continuous updates of individual data
items arriving at high velocities required by data-intensive
real-time applications in the areas of financial transactions,
network monitoring, security monitoring, telecommunications,

1https://www.flowmon.com/en/products/flowmon/probe978-1-5386-3416-5/18/$31.00 c© 2018 IEEE

manufacturing, or sensor networks, and performed very poorly
in such scenarios.

As pointed out by Babcock et al. [6], to overcome these
limitations, a new class of data management applications
emerged. Data Stream Management Systems (DSMSs) orient
on evaluating continuous queries, i.e. queries issued once and
then producing results until removed, over data streams, i.e.
possibly infinite sequences of data elements.

Complex Event Processing (CEP) [1], [7] in general follows
the same goals and principles as DSMSs, yet as it is apparent
from the term, it is focused on the processing of a very specific
type of data elements – events, i.e. meaningful occurrences in
a particular domain. CEP allows its users to detect complex
(composite) events based on expressive queries, e.g. using
sequence patterns, temporal constraints, windows, filters, and
aggregations [8]. Typically, the complex events can be re-
introduced into the processing system as new data streams
available for further processing, i.e. it is possible to create
new complex events in a hierarchical manner, which results in
a powerful data processing paradigm.

Esper2 is one of the most mature open-source CEP en-
gines. Esper is centered around an SQL-like declarative Event
Processing Language, which is used to describe continuous
queries with the ability to detect quite complex situations.

III. DEMO DESCRIPTION

This demo will show a running example of the setup
described in the previous section. We will show how the
flow data are processed by the flow collector, converted,
and passed to Esper. The capabilities of Esper and the EPL
will be demonstrated on multi-stage HTTP brute-force attack
detection, which is a composition of different EPL queries and
is described further in this section.

In our previous work, we studied attacks on HTTP via
network traffic analysis [2]. We found two types of attacks
on HTTP that could be detected: scanning over HTTP and
HTTP brute-forcing. The first attack is similar to well-known
TCP SYN scans, but happens on the application layer. The
attacker sends the same request to many hosts in the network,
e.g., to enumerate vulnerable content management systems.
When such a resource is found, the attack may proceed to the
second type of attack, brute-forcing of a login page, which can
be observed as a series of the same HTTP requests on the same
URL. Not only a correlation between the two types of attacks
was found, but the HTTP scanning was often preceded by TCP
SYN scans. However, we had to implement detection methods
and detect each attack phase individually, before proceeding
to correlate their results, which was time-consuming. With
the CEP-based approach and querying language, we can very
easily set up three queries to detect the individual attack stages,
and a fourth query, that correlates the outputs of the previous
three queries.

We include a sample of a query that can be used to detect
HTTP brute-forcing. The example goes as follows:

2http://espertech.com/esper/

@Name(’BruteForce’)
SELECT
ipfix.sourceIPv4Address as Attacker,
ipfix.destinationIPv4Address as Destination,
ipfix.HTTPRequestHost as Host,
ipfix.HTTPRequestURL as URL,
count(ipfix.sourceIPv4Address) as AtkCount

FROM IPFIX.win:time(1 hour)
WHERE
ipfix.HTTPRequestURL LIKE ’%login%’
or
ipfix.HTTPRequestURL LIKE ’%admin%’

GROUP BY
ipfix.sourceIPv4Address,
ipfix.destinationIPv4Address,
ipfix.HTTPRequestURL

HAVING count(ipfix.sourceIPv4Address) > 50;

As we can see, the query matches the description of the attack
we want to detect. Only the flow records containing HTTP
request with a specific substring are selected. Subsequently, if
there are more such requests from a single source to a single
destination in the time window of 1 hour, the source IP address
is returned as output.

The next query example illustrates a correlation of outputs
of individual detection methods:

@Name(’Output’)
SELECT
TCPSYNscan.attacker as attacker,
TCPSYNscan.atkCount as TCPSYNscanCount,
HTTPscan.atkCount as HTTPscanCount,
BruteForce.atkCount as BruteForceCount

FROM
TCPSYNscan.win:time(5 hours),
HTTPscan.win:time(5 hours),
BruteForce.win:time(5 hours)

WHERE
TCPSYNscan.attacker = HTTPscan.attacker
AND
TCPSYNscan.attacker = BruteForce.attacker;

The query takes outputs of the detection methods as input and
searches for IP addresses that caused all of the three attack
steps during a time window (5 hours in this example).

IV. CONCLUSION

We have presented a working concept of network attack de-
tection using complex event processing (CEP) approach. The
concept has been demonstrated on a multi-stage HTTP brute-
force attack detection, which is a combination of several partial
detections. Instructions to build the demo, used software, and
all necessary configurations have been made available as open-
source at https://github.com/CSIRT-MU/FlowCEP.

ACKNOWLEDGMENT

This research was supported by the Security Research
Programme of the Czech Republic 2015 - 2020 (BV III /
1 VS) granted by the Ministry of the Interior of the Czech
Republic under No. VI20162019029 The Sharing and analysis
of security events in the Czech Republic.

REFERENCES

[1] O. Etzion and P. Niblett, Event Processing in Action, 1st ed. Manning
Publications Co., 2010.

[2] M. Husák, P. Velan, and J. Vykopal, “Security monitoring of http
traffic using extended flows,” in 2015 10th International Conference on
Availability, Reliability and Security, Aug 2015, pp. 258–265.

[3] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” IEEE Communications Surveys Tutorials,
vol. 16, no. 4, pp. 2037–2064, Fourthquarter 2014.

[4] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP
Flow Information Export (IPFIX) Protocol for the Exchange of
Flow Information,” RFC 7011 (Internet Standard), RFC Editor,
Fremont, CA, USA, pp. 1–76, Sep. 2013. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc7011.txt

[5] P. Velan and R. Krejčí, “Flow Information Storage Assessment Using
IPFIXcol,” in Dependable Networks and Services, ser. Lecture Notes in
Computer Science, vol. 7279. Heidelberg: Springer Berlin Heidelberg,
2012, pp. 155–158.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’02. ACM, 2002, pp. 1–16.

[7] D. C. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Longman
Publishing Co., Inc., 2001.

[8] G. Cugola and A. Margara, “Processing flows of information: From data
stream to complex event processing,” ACM Comput. Surv., vol. 44, no. 3,
pp. 15:1–15:62, 2012.

