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Abstract
Detection of network attacks is the first step to network security. Many different methods
for attack detection were proposed in the past. However, descriptions of these methods
are often not complete and it is difficult to verify that the actual implementation matches
the description. In this demo paper, we propose to use Complex Event Processing (CEP)
for developing detection methods based on network flows. By writing the detection
methods in an Event Processing Language (EPL), we can address the above-mentioned
problems. The SQL-like syntax of most EPLs is easily readable so the detection method
is self-documented. Moreover, it is directly executable in the CEP system, which elimi-
nates inconsistencies between documentation and implementation. The demo will show
a running example of a multi-stage HTTP brute force attack detection using Esper and its
EPL.
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Multi-Stage Attacks
In a sample attack considered in this demo,
an attacker tries to take over a a content
management system (CMS). First, the at-
tacks scans the network for running web-
servers. Then, the attacker checks pres-
ence of a CMS such asWordPress or Joomla
by requesting URLs typical for the CMS,
such as login page. Finally, attacker per-
forms brute-force password attack on CMS
login page to get access.

Sample multi-stage attack:
1.Network scan: TCP SYN scan on port 80
on all hosts in the network.

2.HTTP scan: requesting /wp-login.php
from all active web servers.

3. Brute-force password attack:
numerous requests for /wp-login.php on
a webserver where such URL is present.
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Flow Processing Tools
Flow Probe:
• Captures packets from network
• Tracks uni- or bi-directional connections
• Aggregates connection information
• Exports aggregated flow records

Flow Collector:
• Captures flow records from probes
• Transforms data: anonymization,
normalization, format conversion

• Stores or sends data for further
processing
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HTTP Brute-Force Detection
We include a sample of a query that can be used to detect HTTP brute-forcing. The
example goes as follows:
1 @Name(’BruteForce’)

2 SELECT

3 ipfix.sourceIPv4Address as Attacker,

4 ipfix.destinationIPv4Address as Destination,

5 ipfix.HTTPRequestHost as Host,

6 ipfix.HTTPRequestURL as URL,

7 count(ipfix.sourceIPv4Address) as AtkCount

8 FROM IPFIX.win:time(1 hour)

9 WHERE

10 ipfix.HTTPRequestURL LIKE ’%login%’

11 or

12 ipfix.HTTPRequestURL LIKE ’%admin%’

13 GROUP BY

14 ipfix.sourceIPv4Address,

15 ipfix.destinationIPv4Address,

16 ipfix.HTTPRequestURL

17 HAVING count(ipfix.sourceIPv4Address) > 50;
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Correlation of Method’s Outputs
This query example illustrates a correlation of outputs of individual detection methods:
1 @Name(’Output’)

2 SELECT

3 TCPSYNscan.attacker as attacker,

4 TCPSYNscan.atkCount as TCPSYNscanCount,

5 HTTPscan.atkCount as HTTPscanCount,

6 BruteForce.atkCount as BruteForceCount

7 FROM

8 TCPSYNscan.win:time(5 hours),

9 HTTPscan.win:time(5 hours),

10 BruteForce.win:time(5 hours)

11 WHERE

12 TCPSYNscan.attacker = HTTPscan.attacker

13 AND

14 TCPSYNscan.attacker = BruteForce.attacker;
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Esper and Event Processing Language
• Fast (> 6M events per second per CPU)
• Scalable (horizontal scale-out, balancing)
• Embeddable (Java and .NET), standalone
platform

• Low Latency (in the range of microsec-
onds)

• SQL-Standard Compliant
•Open Source
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