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Abstract—This Innovative Practice Full Paper addresses mod-
ern cyber ranges which represent unified platforms that of-
fer efficient organization of complex hands-on exercises where
participants can train their cybersecurity skills. However, the
functionality targets mostly learners who are the primary users.
Support of organizers performing analytic and evaluation tasks
is weak and ad-hoc. It makes harder to improve the quality of
an exercise, particularly its impact on learners. In this paper,
we present an application of a well-structured visual analytics
process to the organization of cyber exercises. We illustrate
that the classification derived from the adoption of the visual
analytics process helps to clarify and formalize analytical tasks
of educators and enables their systematic support in cyber ranges.
We demonstrate an application of our approach on a particular
series of eight exercises we have organized in last three years. We
believe the presented approach is beneficial for anyone involved
in preparation and execution of any complex exercise.

Index Terms—visual analytics, cyber defense exercise, cyber
range

I. INTRODUCTION

Visual analytics (VA) is the science of analytical reasoning
supported by interactive visual interfaces [1]. It is applied
in various fields from biology or weather forecast [2]-[6] to
education [7], [8]. As a specific case, we can consider applied
cybersecurity training which is of our focus.

Various hands-on training programs which aim at improv-
ing attacking or defending skills of learners often augment
theoretical cybersecurity education. While Capture the Flag
(CTF) games focus on the attacking skills and learners solve
one task at a time, Cyber Defense Exercises (CDX) are more
complex events [9]. They mimic real-world operations of an
organization under the attack of an unknown offender, and
their participants work in teams on several issues at a time.

CDXs usually run in virtual environments called cyber
ranges [10], [11]. Cyber ranges provide access to virtual
computer networks where learners exercise their skills and
abilities to protect the infrastructure against the attackers. The
development in cyber ranges focuses mostly on tooling for
learners who are the primary users and the instant assessment.
Less attention is paid to analytical tools for organizers, which
makes an in-depth evaluation and analysis tasks laborious and
time-consuming. Nevertheless, these tasks are crucial in the
process of continuous improvement of CDX events.

Related analytical tasks and visualizations discussed in this
paper clarify analytical interests of organizers and provide a
mapping to the general visual analytics model. This system-
atization is crucial for building awareness of organizational
aspects so that the organizational process can be automated
in cyber ranges. To demonstrate practical applicability, we
present experience gained from the organization of a particular
CDX series.

In the rest of this section, we describe key features of
principles of visual analytics framework and cyber defense
exercises. Section II discusses an adaptation and interpretation
of the visual analytics framework in the context of CDX
organization and its evaluation. We demonstrate a practical
application of our approach on a case study described in
Section III. Lessons learned from our experience follow in
Section IV. Section V concludes the paper with the outline of
follow-up work and research opportunities.

A. Visual Analytics

Keim et al. proposed a formal description of the visual
analytics (VA) process in [12], [13]. They defined basic
terms like data, models, visualization, and knowledge together
with their modeling and analytical processes. However, this
model is primarily system-driven. It focuses on automated data
analyses and does not consider details of user-driven analytical
tasks forming the knowledge via human reasoning.
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Figure 1. An overview of the knowledge generation model for visual
analytics [14].

Sacha et al. in [14] provide a solution that extends the
computer part of Keim’s model with hierarchically connected
human loops, as shown in Figure 1. In this model, we define
knowledge as a "justified belief" that our understandings in a
problem domain are correct [15]. A central role in building
knowledge play hypotheses. In the beginning, they can be
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vaguely defined using many unknown factors; then they can
be gradually refined to produce deeper insight into a problem
domain. Sufficiently approved insights and hypotheses can
be accepted as new knowledge which can affect or initialize
further hypotheses. During the exploration loop, analysts either
verify or disprove hypotheses via actions that manipulate data
and models utilizing interactive visualizations. Gained findings
have no interpretation. A finding would be an unusual peak
in a graph, for instance, that attracts analyst’s attention. To
understand the peak and then to gain insight, the peak has to
be interpreted by the analyst. It often requires further actions to
be performed. Meaningful findings can lead to gaining insight
into the problem domain.

B. Cyber Defense Exercises

The CDX is an exhausting event which usually spans one
to several days of a very intensive engagement of learners.
It includes familiarization with the infrastructure, hands-on
experience, and the evaluation phases. Hands-on part runs
by a prescribed game scenario. However, the whole CDX
life cycle is even more demanding for organizers. It spans
several months and involves dozens of highly skilled people
in multiple domains (cybersecurity, education, law).

Persons involved in the CDX usually form four teams.
Learners, mostly ICT professionals, are organized in several
Blue teams consisting of at least three people. Red team
members represent attackers who run attacks against the Blue
teams. Scoring and controlling game scenario and rules are
tasks of the White team members. They also represent several
avatar characters (company users, management, lawyers), or
journalists who interrupt the game with various inquiries on
the Blue teams. Members of the Green feam maintain the
underlying infrastructure of the exercise.

As we can deduce, CDX examines both technical and
soft skills of learners. Every Blue team tries to protect a
dedicated IT infrastructure while facing multiple issues at a
time. They are forced to prioritize and assign tasks ranging
from technical issues (e. g., hacked server) to interaction with
avatar characters (e.g., creating press news). The learners
can only presume whether their actions were correct or not
based on the minimal feedback in the form of a total score
of the team. Example techniques for automated assessment
of learners performance are in [16], [17]. The organizers can
usually access detailed overview based on game scoring rules.

The actual exercise (gameplay) is only one of the four
phases of the CDX life-cycle. A preparation phase spans
several months before the event. Its outputs are a detailed game
scenario, infrastructure deployed in the cyber range, scoring
system, and game rules. A dry run phase involving testers
in Blue teams helps to find flaws in the rules and the game
scenario. Learners play the CDX game in an execution phase.
An evaluation phase concludes the life-cycle. As a result,
organizers use the outcomes in the next run. Data sources for
the evaluation span from learners’ feedback to automatically
acquired data from the cyber range (e.g., computer logs,

configuration changes, users’ actions). More details about an
exercise life cycle can be found in [18].

Knowledge of organizers of CDX is collective and continu-
ous. Collective means that there are many organizers involved
who share their experience to build and reuse the knowl-
edge. Continuousness comes from the fact that methods of
exploratory and confirmatory analyses used in the exploration
loops of CDX usually produce approximate results leading to
uncertain insight. Only repeating the analysis through multiple
exercises can improve the insight by making it gradually
more and more credible to be finally accepted as a piece
of knowledge. Our goal is to adapt Sacha’s VA framework
for CDX so that we can build and share the knowledge
systematically and efficiently via functionality provided by
cyber ranges.

II. VISUAL ANALYTICS IN CYBER EXERCISES

Application of the VA framework on the organization of
CDX requires clarifying the type of data, available models,
visualizations, and also human-driven analytical processes de-
pending on these computer-related elements. In what follows,
we discuss the VA model from these individual perspectives
and define a classification scheme that helps us to understand
how the VA model fits requirements of CDX organizers.

A. Hypothesis-driven Analytical Goals

Hypotheses actively drive the unified VA model. Moreover,
a vast amount of various teams and user roles involved in the
organization can introduce a considerable amount of different
objectives. These aspects could make the adoption of the
unified VA framework and its systematic support in cyber
ranges impossible.

To cope with these doubts, we divide common analytical
goals to three distinct categories which enable us to (a) clarify
the hypotheses, (b) classify them according to the goals, and
(c) map verification loops of the hypotheses to individual
phases of CDX life cycle. Figure 2 overviews goals and their
mapping to CDX life-cycle phases.

Goal 1 — Evaluation of exercise content and parameters:
One of the most challenging tasks in the organization of cyber
defense exercises is to make an exercise useful and to keep
learners motivated to finish it. Therefore, hypotheses related
to scenario difficulty, learners’ confidence and satisfaction,
learners’ skills, and many other qualitative aspects, are often
formulated.

During the preparation phase, organizers estimate and
prepare key exercise parameters, such as a storyboard, a
task schedule, penalty types and their values or types of
attacks. Their improper values can make the exercise too
complicated, too dull or unrealistic, which can quickly make
learners frustrated. Therefore, organizers usually utilize a prior
insight or knowledge gained from previous runs (results of
their evaluation phase). Moreover, skills and experience of
prospective learners are often ascertained employing self-
evaluation questionnaires gathered in this phase. Results of
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Figure 2. Mapping of goals and data to phases of CDX life cycle.

this analytic loop are used to create well-balanced teams and
to adapt exercise parameters to them.

Exercise parameters are tested and adjusted during the dry
run. Note, that the verification loops are limited because
participants involved in the dry run differ from learners and
then also the results are approximate.

Hypotheses are verified during the evaluation phase when
statistical models, knowledge-discovery models, exploratory
visualizations, and other tactics of verification loops applied to
exercise parameters and the data gathered during the exercise
are brought into action. Gained insight and knowledge are
used by organizers to prepare even better and more attractive
exercises in the future.

Goal 2 — Behavioral analysis of learners: Study of the
behavior of learners during an exercise can reveal relevant facts
about their motivation, learning impact or level of knowledge.
Gained information is useful for (a) learners as they can learn
about themselves, their strengths, weaknesses, and mistakes;
(b) exercise contractors, usually learners’ employers, who can
learn about the skills of their employees; (c) security experts
and researchers who can reveal and compare atypical defense
strategies, collaboration strategies, and other behavioral pat-
terns. Therefore, organizers should be supported in these types
of behavioral analyses so that they can verify behavior-related
hypothesis and provide reasonable feedback to participating
parties. Let us note that this goal is also partially related to the
previous one because behavioral analysis of learners can also
reveal problems caused by exercise parameters. For example,
if organizers detect that several teams gave the exercise up in a
particular phase of attacks plan, then they can infer insufficient
difficulty of these attacks or inadequate readiness of learners.

The dry run is used to verify infrastructure, required data,
and analytical loops. However, Blue teams involved in the
testing are different from target learners. Neither the data nor
possible analytical results are usually valid for gaining general
knowledge, and they are erased before the execution phase.

At the end of the execution phase, it is convenient to provide
feedback to learners so that they can analyze their behavior
and learn from their mistakes immediately after the exercise.
However, such feedback requires automatic data gathering
and mediation to learners through intuitive and interactive
analytical tools integrated into the cyber range. Adoption of
the VA model by cyber ranges would help to achieve this

valuable functionality.

The main effort related to the behavioral analysis is dedi-
cated to the in-depth verification of corresponding hypotheses
during the evaluation phase. The organizers present these
results to learners during post-exercise workshops few weeks
after the exercise.

Goal 3 — Runtime situational awareness: During an ex-
ercise, organizers monitor and analyze the situation on the
"battlefield" and actively intervene if necessary. They have
to analyze the situation from their perspective and interact
with the system continuously. However, it is important to
realize that runtime situational awareness provided to learners
is intentionally very limited because in CDX the realism is
of high importance. Therefore, giving an insight, which is not
available in the real world, is undesirable. On the contrary, the
goal of CDX is often to train learners in gaining the insight
by themselves.

We can consider situational awareness as a process of
making simple runtime hypotheses in the users’ mind. The
hypotheses are evaluated via interactive visual tools mediating
access to the infrastructure and proving insight into its internal
processes and developments. Interactions of learners produce
data for the verification of organizers’ hypotheses.

The situational awareness plays an essential role during the
execution phase. It is not a passive process when a user is
only notified of important events. On the contrary, actions and
visualizations of situational awareness have to enable learners
and organizers to interact with the system actively and then to
affect its state. These interactions and changes in state are often
monitored and used for following analytic tasks of the previous
two analytical goals during the CDX evaluation phase.

B. Data

As hypotheses defined for cyber exercises are changing then
also requirements on data are frequently changing. Moreover,
CDX is often unstructured from the learner’s perspective. For
instance, a cyber range can generate network flows (data trans-
mitted through networks), hosts and network characteristics
(e. g., network throughput, memory size), system logs, ques-
tionnaires or scenario penalties. Variability and heterogeneity
of data put high demands on the adaptability of the monitoring
and storage infrastructure and make the design intriguing, as
discussed in [11], [17], [19].



To clarify data required for visual analytics of CDX, we
classify them according to the phases of exercise life cycle,
as shown in Figure 2. As classification criteria, we use data
creation. However, it is worth to point out that data created
in particular phase can be used to solve any analytical goal at
any phase of the exercise life cycle.

Scenario-specific data: Configuration data defined by orga-
nizers usually in the preparation phase and possibly adjusted
during the dry run. These data include, for example, a division
of learners to teams, network topology, and network proper-
ties, the definition of required exercise services running on
defended networks, types of penalties and their values or attack
schedule. This category also includes answers to questions of
various learners surveys.

Exercise runtime data: A system-generated data gathered
and stored during the execution phase of an exercise. They
represent quantitative operational data providing digital evi-
dence of the behavior of users and applications during the
exercise. Exercise runtime data is often based on the scenario-
specific data and include, for example, particular penalty
points assigned to teams, information about (un)availability of
exercise services at given time or logs from hosts. Exercise
runtime data is also collected in the dry run for testing
purposes and then deleted.

Evaluation data: User-generated data provide qualitative
information. This data is gathered either from learners at the
end of exercise via post-exercise surveys, specialized feedback
visualizations, or from organizers during the evaluation phase
where additional data can be inserted to verify hypotheses.
For example, structured informal notes about the behavior of
learners noticed by organizers during the exercise can be added
to the dataset.

C. Models

Models derived from data can be as simple as descriptive
statistics or as complex as a data mining algorithms. Their
usage is also reasonable in the context of cyber exercises.
For example, complex networks [20] could be used to capture
relationships between learners to simulate and analyze their
behavioral patterns like collaboration or defense strategies.
Knowledge discovery approaches to anomaly detection [21]-
[24] can reveal significant exercise parameters or learners with
remarkable skills.

Nowadays, standard statistical models are used extensively
for the evaluation of exercises [25]-[29]. On the contrary, the
utilization of advanced models is exceptional and ad-hoc just
because of missing conceptual solution to repeated analytical
tasks in the CDX domain.

D. Visualizations

As for the visualizations, some classifications and perspec-
tives allow us to cover different targets of existing models and
available data. Our classification divides visualizations into
three basic categories providing insight into data according
to analytical goals.

Exercise infrastructure overview: Interactive visualizations
that give us a complete overview of the structure and state
of network infrastructure and help us to monitor running
services. These visualizations are beneficial for runtime sit-
uational awareness (analytical Goal 3). However, the network
topology overviews usually represent primary access points
used by learners to interact with the infrastructure. Therefore,
visualizations equipped with functions monitoring interactions
of learners can help us to gather the data related to learners’
behavior and then to verify hypotheses of the analytical Goal 2.

Visual insight into the exercise progression: Visualizations
that aim at providing insight into the state and development
of an exercise. Some insight can be gained from the discussed
views on exercise infrastructure. For example, inaccessibility
of services dues to a successful Red team’s attack. However, it
is not usually enough, and both learners and organizers need
specialized views covering the exercise state. For example,
Blue teams should be informed about the development of
their score, while Red, Green, and White teams should have a
detailed overview of planned and performed attacks and their
successfulness so that they can distinguish between expected
behavior and failures in the infrastructure, for instance, and
then intervene properly.

This category of visualizations is useful primarily for the
analytical Goal 3 because it provides situational awareness to
both parties. At the same time, it can be helpful in verifying
exercise parameters (Goal 1). For example, if the schedule of
the exercise is not rich enough, or the Blue team is too busy
or bored, the exercise parameters could be considered wrong
and adjusted for future runs.

Feedback visualizations: The goal of visualizations pro-
viding interactive visual feedback is to gain insight into the
exercise as well, but not from the perspective of current
exercise progression. Instead, this insight is retrospective,
aiming at learning from runtime mistakes, wrong decisions,
or improperly estimated exercise parameters. Providing timely
intuitive feedback to learners is crucial for improving the
impact of the exercise. However, if the feedback is extended
with the possibility to comment or rank events by the learners
actively, then it can be even more useful. This kind of learners’
reflection can help to reveal inappropriate exercise parameters
(Goal 1) and to gather a data related to the behavior of
individual learners (Goal 2).

III. CASE STUDY

In this section, we illustrate the application of visual an-
alytics process in CDX which we distilled from eight runs
of Cyber Czech exercise series held in 2015-2017. Each run
lasted two days and involved about 20 learners located in
one physical place. We follow the exercise life cycle and
put tasks and components of the visual analytics model into
the context of individual phases so that their continuity is
better recognizable. The iterative principle of visual analytics
process results in multiple iterations over the refined and/or
redefined hypotheses. Table I summarizes results for primary
hypotheses, as discussed in what follows.



Table 1

OVERVIEW OF THE VISUAL ANALYTICS PROCESS MAPPED ON THE INITIAL HYPOTHESES.

Every single participant is involved

Fairly confirmed. Detailed per-user data
required in the future. The level of in-
volvement would stand as an indicator
of cost-efficiency of the exercise =
hypothesis H2a.

Exercise infrastructure is stable and re-
sponsive enough to resemble realistic
settings

Uncertain  results. Current  views
on monitoring data provide situational
awareness but no statistics for evaluation
of stability and responsiveness of the
infrastructure.

Organizers: Data definition, configuration of data sources (sub-systems) and visualizations, evaluation.
Learners: Filling questionnaires, interaction with the cyber range and feedback visualizations.

Majority of the learners declared they
were involved. The data was, however,
collected on a per-team basis. We were
not able to objectively measure the level
of involvement of every single partici-

A considerable amount of issues re-
ported by learners. The Green team was
aware of most of them. Several issues
remained unnoticed.

Post-exercise questionnaires.

Descriptive statistics

Hypothesis The participants improve their skills
Insight Fairly confirmed. Individual learners
would be affected by their skills and
skills of teammates = hypotheses Hla
and HIb. A novel ways of prerequisite
g testing are desired.
£
E Actions
Findings Majority of the learners confirmed they
learned new skills or re-shaped existing
ones. Some learners did not learn any-
thing new. Some others admitted the lack
of necessary skills.
pant.
5_"') Data Data from scoring and auditing systems,
ES pre- and post-exercise questionnaires.
§ Models Descriptive statistics
Visualization Feedback visualization

Feedback visualization

Data from the monitoring system, notes
taken by organizers.

N/A

Nagios, network topology

A. Hypotheses

Hypotheses are either formulated during the preparation
phase of a CDX or reused from previous exercises. We
formulated several hypotheses, from which we selected the
following we consider as the most important:

HI — Participants improve their skills: First and foremost,
the exercise should be useful for learners. It should deliver
any educational value: either in technical, organizational or
communication level. In particular, learners should develop or
exercise skills required for incident handling and resolution,
including reporting and communication with other parties out-
side their team, as well as working under stressful conditions.
This hypothesis is related to the analytic Goal 1.

H2 — Every single participant is involved: Costs and effort
invested in preparation and execution of the complex exercise
should be utilized efficiently. Each learner should benefit from
participating in the exercise. The content of the exercise should
be rich enough to engage each participant. This hypothesis is
related to Goals 1 and 2.

H3 — Exercise infrastructure is stable and responsive
enough to resemble realistic settings: The CDX infrastructure
is complicated. Multiple instances of separate environments
of individual teams are deployed and transparently emulated
on a restricted and complex infrastructure of the cyber range.
However, any virtualization issue should not affect the user
experience of real-life infrastructure regarding performance,
response or failures. This hypothesis is related to the analytic
Goals 1 and 3.

B. Preparation Phase

During the preparation phase, it is necessary to define
data to be gathered for further analysis, configure data-related
components of the cyber range, and prepare the graphical

user environment. In particular, we perform the following
preparation actions.

Preparation of surveys, formulation of questions: To verify
our hypothesis, we use pre- and post-exercise questionnaires.
This evaluation data are related to qualitative aspects of
learners and exercise, e.g., participants’ skills, their exercise
experience, their opinion on difficulty or usability. We cur-
rently use the external Google Forms system to define and
process questionnaires, which complicate the evaluation and
integration of gained answers with internal data measured and
stored in the cyber range.

Scoring subsystem settings: A scoring subsystem is used
for penalization of Blue teams. Concrete penalties assigned
to learners represent an exercise runtime data which are
collected during the later phases of CDX life cycle. During
this preparation phase, a scenario-specific data is used to
define scoring rules. Attack plans, objectives, and their penalty
values are set according to expected goals of the exercise and
learners’ skills.

Infrastructure monitoring settings: Green team members
configure the infrastructure monitoring subsystem to keep
track of the health of the virtualized networks and their under-
lying infrastructure. This step requires to specify a scenario-
specific data like topology details, IP addresses of monitored
hosts, network ports of watched services, or required timeouts.
Exercise runtime data produced by the monitoring subsystem
during the execution phase in the form of events is used for
situational awareness of the Green team and for the automa-
tized penalization of Blue teams for inaccessibility of network
services (e. g., web, mail) that are under their management in
the scenario. Currently, we use the Nagios monitoring system
running in the cyber range as a standalone application. Its
tighter "out of the box" integration into the cyber range would



bring better connection to other internal data and then more
effective situational awareness and analysis.

Configuration of auditing capabilities: While the infras-
tructure monitoring subsystem monitors infrastructure, the
auditing subsystem monitors events that are related to the
behavior of users and applications. This step includes the
configuration of probes and internal auditing capabilities of
the cyber range so that we can monitor required events like
access to hosts, e-mail delivery, host reboots, or a history of
commands run on a host by learners.

Configuration of runtime visualizations: Visualizations used
in the cyber range are generic and highly configurable to cope
with a wide variety of user goals. For example, the interactive
network topology shows network-related exercise runtime data
like current utilization of links or the state of nodes. However,
this kind of situational awareness is undesirable for CDX, and
the organizers have to adjust provided visualizations so that
they satisfy specific requirements of the exercise.

C. Dry Run and Execution Phase

During the execution phase, interactions of various partici-
pants mingle. Moreover, the interactions reflect different levels
and details of human loops of the visual analytics process. For
instance, learners’ actions produce data for exploration and
verification loops of organizers. To discuss relevant activities
meaningfully, we describe them from the viewpoints of the
individual teams involved in the CDX.

Blue teams: In our exercise, the Blue teams produce data
for verification loops of hypotheses HI — Participants improve
their skills and H2 — Every single participant is involved. Ob-
servations made by learners during their interactions with the
network infrastructure lead to further interactions motivated
to fulfill exercise tasks. Interactions are monitored and stored
for verification loops of hypotheses of organizers. Moreover,
learners also fill pre- and post-exercise questionnaires to evalu-
ate their input knowledge and exercise experience respectively.
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Figure 3. Interactive network topology visualization.

During the exercise, learners use two runtime visualizations
for situational awareness: network topology (see Figure 3) and
scoreboard. The former provides an overview of the network
they administer and enables them to access individual hosts.
The latter provides a score overview of all teams. The score
includes both automatically collected data from the cyber
range (e.g., availability of the web service or database) and
inputs from other teams (answered questions of their users or
journalists).

Situational report I. [250] H3

We forgot to send an answer.

We had no idea what to answer.

We answered this immediately.

We answered this, but needed some time.
We have no idea why we should answer this.

Situational repart |.
250 “OM\O\

Figure 4. An example of learners’ evaluation of their actions

At the end of the exercise, learners get access to a specific
visual-analytics tool for personalized feedback [30]. It displays
the score development throughout the time enhanced with
data points containing brief descriptions of reasons why score
changed. These are coupled with analytical questions related
to a retrospective evaluation of learners’ actions by organizers,
as shown in Figure 4.

Green team: The Green team provides technical support
during the exercise and produces data for H3 — Exercise
infrastructure is stable and responsive enough to resemble
realistic settings. The exercise execution is time-demanding
since every issue needs to be solved as quickly as possible.
Therefore, the more in-depth analysis of the issues and their
solutions are mostly summarized in the evaluation phase.

The principal visual analytics tools of the Green team
are network topology and Nagios dashboard. The network
topology has the same capabilities as for the Blue teams, but
it is rarely used. Most of the operations are done through
the Nagios, which provides an overview of all Blue teams’
networks. Also, it also displays service nodes that are not
accessible by Blue teams, e. g., attackers’ hosts.

Red team: Red team members perform the set of attacks
according to the plan and enter penalty points based on the
Blue teams’ counter-actions. The gathered data about attacks
and their successfulness is used to test H1 and H3 hypotheses.

The primary modus operandi is using a command line
interface. The visualization tools are limited to a simple static
schedule of the attacks made beforehand. For gaining better
game situational awareness, the Red team needs to cooperate
closely with the green one. For instance, to assess the success
of their attacks, they need to know whether the attack was



unsuccessful due to an adequate counter-action of a Blue team
or because of an outage of the cyber range.

White team: While the Red team focuses on hard-skills,
White team members enter penalties based on soft-skills
findings. They provide data for testing H1 and H2 hypotheses.
They need to know the state of the game since some of their
injects are time-related to attacks of the Red team. Therefore,
they need to cooperate with both green and Red teams.
Unfortunately, we have no tool for this type of orchestration
and situational awareness available nowadays. The teams have
to synchronize their activities via external communication
channels.

Besides other activities, the White team also play a role
of ordinary users. To do that, members of the team use
the topology visualization to access hosts, simulate frequent
utilization of the network, and interact with Blue teams.

D. Evaluation phase

Main outcomes of the evaluation phase are hypotheses for
the second iteration of the visual analytics process. These are
based on the findings and insight gained from the verification
loops of the original set of hypotheses:

HI — The participants improve their skills: We analyzed
learners’ pre- and post-exercise surveys and exercise scores
using standard statistical models and exploration loops. We
found out that the majority of learners confirmed they learned
new skills or re-shaped existing ones. However, some learners
reported that they did not learn anything new and some others
admitted they lack some necessary prerequisite skills. Both
extremes may indicate flaws in the selection of individual
learners, their grouping to a team, or structure and content
of exercise tasks.

H2 — Every single participant is involved: The vast majority
of collected exercise runtime data captures actions of teams,
not individual learners. The only data sources we analyzed
to verify this hypothesis were post-exercise surveys and re-
flections provided by individual learners using an application
providing automatically generated feedback visualizations. Al-
though the results indicate that almost all participants felt
involved during the exercise, the level of their involvement is
unknown and may vary widely due to the absence of objective
and rich data tracking all available modes of interactions.

H3 — Exercise infrastructure is stable and responsive
enough to resemble realistic settings: Exercise runtime data
serve for determining the exercise score and monitoring the
exercise infrastructure. The current view of the data does not
provide any statistics for evaluation of stability and respon-
siveness of exercise infrastructure. The only data sources are
learners’ post-exercise surveys and notes of issues taken by
members of teams of organizers, in particular by Green team.
A considerable amount of learners reported various issues.
The organizers were fully aware of some of them, but there
were several issues unnoticed. Again, the objective data source
would help to clarify this bias.

E. Derived Hypotheses

Consequent hypotheses derived during the iterative VA
process usually emerge. Due to the space restrictions of the
paper, we end up with the outline of the hypotheses for the
second iteration to illustrate the process continuation.

Hla — The difficulty of the exercise was adequate for
learners: One of our observations related to H1 is that cohorts
of dry-run and execution participants bias the perception of
the difficulty level. The input knowledge of actual learn-
ers (not testers) needs to be considered. However, the pre-
exercise survey relies only on self-assessment of learners’
skills that could introduce an unwanted bias. We advocate
complementing the self-assessment survey by a quiz or a
practical task that would test the required skills objectively. As
a result, prospective participants would have skills adequate to
the exercise difficulty. The hypothesis relates to the analytic
Goals 1 and 2.

HI1b — Learners form well-balanced teams: While the CDX
is based firmly on teamwork, grouping people of different
skills into well-performing team covering as much as prereq-
uisite skills is crucial. Weaknesses of one shall be balanced by
strengths of another member of the team and vice versa. Since
the teams are formed before the exercise, the pre-exercise
survey questions should be refined to acquire more accurate
data for optimal team balancing. The hypothesis relates to the
analytic Goal 2.

H2a — Participants’ involvement stands as an indicator for
cost-efficiency of the exercise: CDX is a costly event. While
person-months spent and costs of computational resources can
be calculated relatively easily, answering the question whether
the costs are adequate is tough. Participants’ involvement
could be a good indicator. The organizers should be able to
determine the involvement ratio for each participant as well as
the overall involvement of the whole group. The methodology
for gaining the involvement ratio should combine outcomes
from post-exercise questionnaires with analysis of participants’
behavior and actions (e.g., from the automatically collected
logs and commands they entered). As a side effect, the
organizers should be able to provide learners with personalized
feedback on their strengths and weaknesses. The hypothesis
relates to the analytic Goals 1 and 2.

H2b: The set of exercise tasks covers relevant security
issues: Thousands of threats exist, but only a subset of them
is relevant these days. Attacks selected for the exercise should
exploit recent and relevant threats rather than out-of-date and
insignificant ones. While the obsolete threats can be suitable
for the educational purpose, the organizers should carefully
consider and select those, that are relevant nowadays (i. e., par-
ticipants can experience them in their work). Strongly outdated
threats (e. g., those that focus on no more used version of an
operating system or a web server) are inappropriate. Common
Vulnerability Scoring System (CVSS) by FIRST! can be used
to assess the relevance of the threats. The hypothesis relates
to the analytic Goal 1.

Uhttps://www.first.org/cvss/



F. Output Knowledge

Verification of hypotheses H1-H3 brought a valuable insight
regarding the usability of our cyber range, attractiveness for
learners and the level of impact on them. However, the total
number of teams that have been involved in the exercise series
and provided data for the verification is relatively small. For
this reason, we perceive conclusions formulated in this section
as insight only. To be able to declare them as a justified
knowledge, we need to verify them on more runs.

IV. LESSONS LEARNED

Organization of complex CDX is usually ad-hoc hence
inefficient: Modern cyber ranges support the organization
of complex CDX. However, the organization discussed in
Section I-B requires a vast amount of manual work and
interventions in the infrastructure. Data useful for the opti-
mization of CDX organization and improvement of exercise
experience is often not gathered at all, or the data processing is
not systematical. The data is usually exported manually from
internal data sources and then processed in external tools ex-
post. Our goal is to organize CDX efficiently, to use data as
soon as possible (often at runtime), and to evaluate the impact
on learners and the overall quality regularly. The classification
of analytical tasks and their visual analytics elements discussed
in this paper in the context of CDX life cycle would help us
to solve this goal by identifying and clarifying processes that
can be systematically supported by the cyber range.

Hypothesis-centered approach to CDX is suitable: Hy-
potheses actively drive the visual analytics model used as
a unified framework for our approach. Although we were
not using this hypothesis-centered way of thinking during the
realization of previous exercises intentionally, we have come
to realize that in fact, we were thinking in this way intuitively
in many cases. Moreover, we found this kind of mindset handy
for the definition of required data and the design of supporting
interactive visual tools during the preparation of new exercises.

Positive impact on learners and organizers: Integration of
even a few preliminary features of the visual analytics process
into our cyber range brought positive outcomes from both
learners and organizers, as shown in [30]. The application of
the VA process to the organization of CDX also encouraged us
to formalize attack plans, objectives, and other scenario-related
events. Consequently, they are used for systematic analysis and
runtime coordination of Green, Blue, White, and Red teams.

Structure of CDX-related knowledge was clarified: Nowa-
days, organizers have defined several processes prescribing
how cyber defense exercises and their validation results should
be documented and shared among team members so that ex-
ercises can be continuously adjusted and improved. However,
the documentation is informal. It was not clear so far what the
CDX-related knowledge exactly means and how to structure
the pieces of information. Classification of CDX processes and
elements discussed in this paper brings clear terminology and
semantics which are suitable for formal knowledge modeling,
e. g., using formal ontologies.

V. CONCLUSIONS AND FUTURE WORK

Cyber defense exercises are complex education events re-
quiring a significant amount of efforts of interdisciplinary
teams. Application of the visual analytics process proves bene-
ficial to CDX organization and evaluation. As we demonstrated
on our case study, the iterative approach of human loop helps
us in the identification of issues and leads us towards concrete
suggestions for improvements in the organization of CDX.
Simultaneously, application of the visual analytics process
clarified the structure of the CDX-related knowledge enabling
its better management.

However, we need to explore and revise the VA components
further. While having raw data from the exercises, we have an
unclear notion about the valuable data models applicable in
this domain. The useful visualizations are alike. The lack of
VA tools integrated into cyber ranges is a severe weakness
of nowadays. These tools could provide automated statistical
analysis as well as more in-depth insight into the learner’s
behavior during the game. They could also help in improving
the process of CDX organization.

In this paper, we focus mainly on the organizers’ viewpoint.
Learners could also apply the VA process even though they
have entirely different experience than organizers. They are
focused on particular tasks related to the exercise content
rather than the overall process. For this reason, we leave this
topic for our future work.
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