

# Evaluation of Cyber Defense Exercises Using Visual Analytics Process

Radek Ošlejšek, Jan Vykopal, **Karolína Burská**, and Vít Rusňák

IEEE Frontier in Education Conference, San Jose, USA, 2018









# **KYPO Cyber Range**

Cloud-based "simulator" of computer networks

So powerful that we can organize cyber defense exercises, CDXs

- Extreme use case
- Comprehensive training for IT professionals
- Realism, difficulty (2 days), work under stress, ...
- Protection of complex critical infrastructure by Blue teams
- Escalated attacks of a Red team

# ... but the preparation and organization is a nightmare :-(



# **Cyber Defense Exercises – Current Problems**

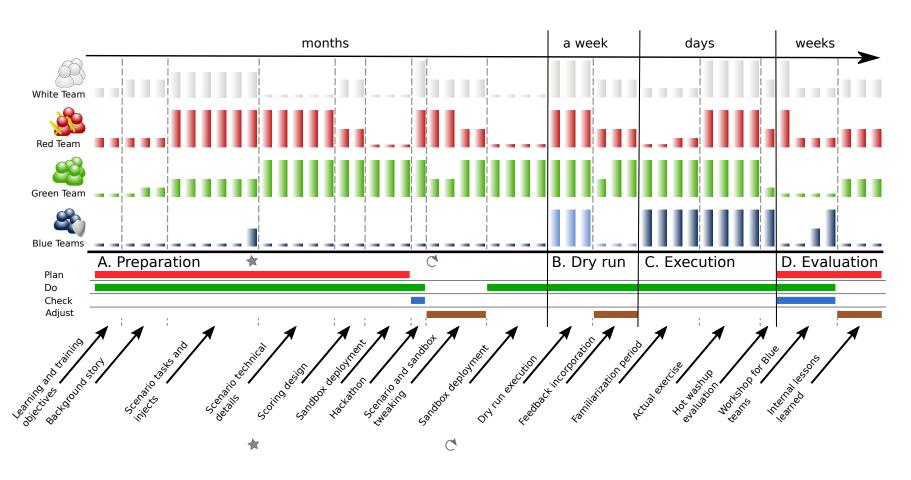
## New scenarios are designed from scratch

No transfer of knowledge and experience between (changing) organizers

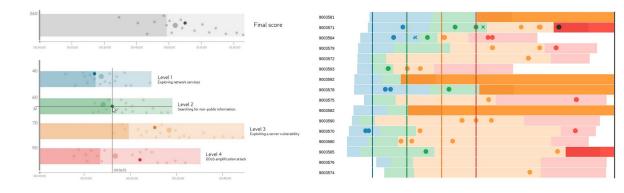
#### The lack of situational awareness

Monitoring the infrastructure, providing insight, ...

## The lack of analytical tools

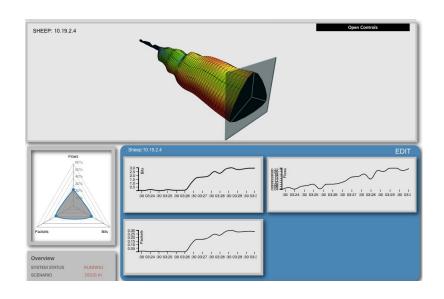

Evaluation of scenarios, improving their impact on learners

#### Reason:


 too many involved people, non-formalized processes, changing data, unclear objectives => a lot of ad-hoc preparation and manual work.



# **Cyber Defense Exercises – Life Cycle**

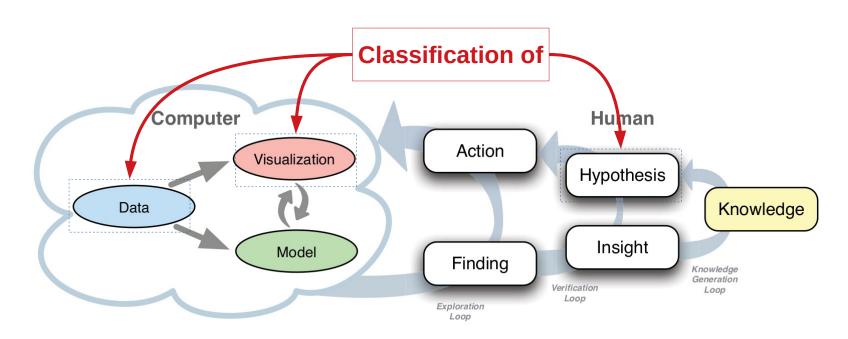







## **Our Goal**

- To clarify data, processes, and requirements
- Systematically support organizers in their tasks by means of interactive visualizations integrated into the cyber range






# **Approach: Using a Visual Analytics Process**

Knowledge generation model by Sacha et al.

 Hypothesis-driven model extending the model of Keim et al. (the computer part) with hierarchically connected human loops



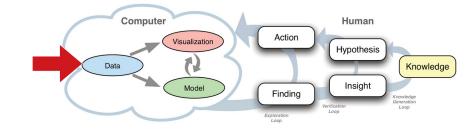




# **Analytical Goals (Classification of Hypotheses)**

## G1: Evaluation of exercise and its parameters

- To make an exercise useful and to keep learners motivated to finish it.
- Hypotheses related to scenario difficulty, learners' confidence and satisfaction, learners' skills, and other qualitative aspects


## G2: Behavioral analysis of learners

- To reveal relevant facts about the motivation of learners, learning impact, their level of knowledge, etc.
- Hypothesis related to the study of the behavior of learners during an exercise.

#### G3: Runtime situational awareness

 We can consider situational awareness as a process of making simple runtime hypotheses in the users' mind.

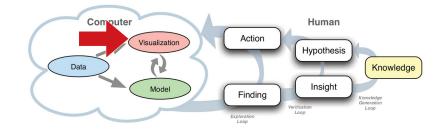




#### **Classification of Data**

## Scenario-specific data

- Configuration data defined by organizers usually in the preparation phase
- Division of learners to teams, network topology, penalties, ...


#### Exercise runtime data

- A system-generated data gathered and stored during the execution phase of an exercise.
- Obtained penalty points by individual teams, ...

#### **Evaluation data**

- User-generated data providing qualitative information
- Post-exercise surveys, online feedback data, notes of organizers, ...

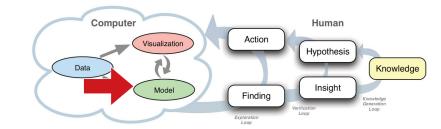




## **Classification of Visualizations**

#### Exercise infrastructure view

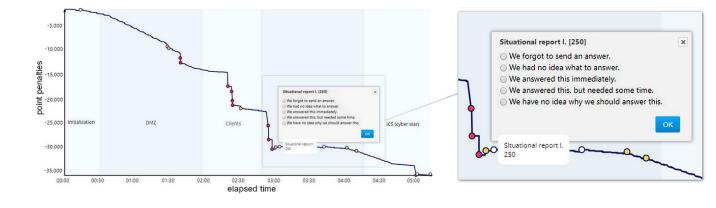
 Monitoring of services and infrastructure (G3 – situational awareness and G2 – behavioral analysis).


## Visual insight into the exercise progression

 Primary visualizations for G3 – situational awareness. Moreover, online validation of exercise parameters (G1 – exercise evaluation)

### Interactive feedback visualizations

Interactive = learners provides comments, ranks events, etc. This data is used by organizers to reveal inappropriate exercise parameters (G1 – exercise evaluation) and to collect behavioral data (G2 – behavioral analysis)



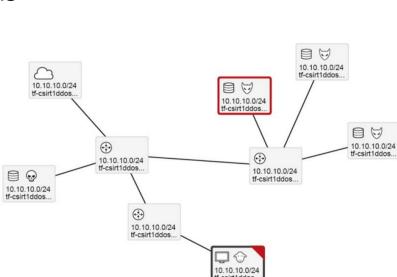



## Model

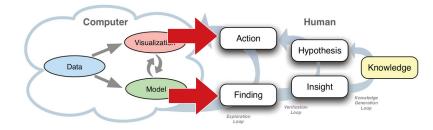
- Can be as simple as descriptive statistics or as complex as a data mining algorithms
- Statistical models are used extensively for CDX
- Utilization of advanced models is exceptional and ad-hoc just because of missing conceptual solution to repeated analytical tasks






Team 1

Team 4


Team 3

# **Case Study**

- Hypothesis:
  - The participants improve their skills
- Data
  - Data from scoring and auditing systems
  - Pre- and post-exercise questionnaires
- Model
  - Descriptive statistics
- Visualizations
  - Feedback visualization
  - Statistical visualizations







# **Exploration Loop: Actions and Findings**

For the hypothesis "The participants improve their skills"

#### Actions:

- Organizers: Data definition, configuration of data sources (subsystems) and dashboards (visualizations), evaluation
- Learners: Filling questionnaires, interaction with the cyber range and the feedback visualization

## Findings:

- Majority of the learners confirmed they learned new skills or re-shaped existing ones.
- Some learners did not learn anything new.
- Some others admitted the lack of necessary skills.





# **Insight and Knowledge**

For the hypothesis "The participants improve their skills" Insight:

- Fairly confirmed. Individual learners would be affected by their skills and skills of teammates. A novel ways of prerequisite testing are desired.
- New hypotheses hypotheses have been derived:
  - The difficulty of the exercise was adequate for learners
  - Learners form well-balanced teams

## Knowledge:

 Knowledge is a "justified insight". In our case study, it is necessary to repeat the exercise so that we get data of more participants



## **Conclusion**

- We proved the applicability of VA process on complex cyber defense exercises
- We proposed a basic classification for hypotheses, data, models, and visualizations and their mapping to CDX life cycle
- Applying the VA process to the organization of cyber defense exercise enabled us to
  - Rethink the organizational and analytical processes in the hypothesis-driven way
  - Identify current limits in the automation and systematic support of important processes in our cyber range
  - Structure our know-how so that it would be possible to build a formalized knowledge and share it across organizers