

## **Similarity-Based Processing of Motion Capture Data**

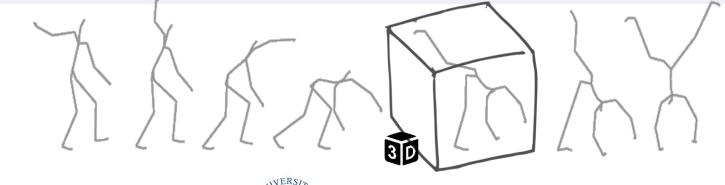
Jan Sedmidubsky

Pavel Zezula

xsedmid@fi.muni.cz

zezula@fi.muni.cz

[Jan Sedmidubsky and Pavel Zezula. Similarity-Based Processing of Motion Capture Data. ACM Multimedia (MM 2018). ACM, pp. 2087–2089, 2018.] https://dl.acm.org/citation.cfm?id=3241468



Laboratory of Data Intensive Systems and Applications disa.fi.muni.cz



Supported by ERDF "CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence" (No. CZ.02.1.01/0.0/0.0/16\_019/0000822).

### Outline



2/159

#### Outline

- 1) Motion Data: Acquisition and Applications
- 2) Challenges in Computerized Motion Data Processing
- 3) Similarity as a General Concept of Data Understanding
- 4) Similarity of Motion Sequences

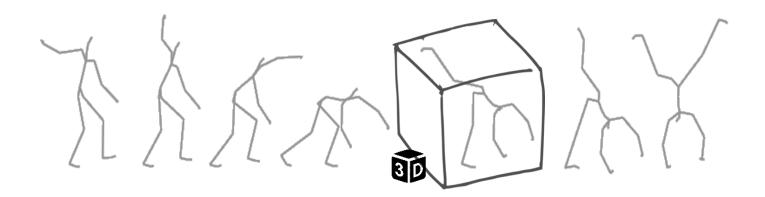
----- Coffee break ------

- 5) Classification of Segmented Motions
- 6) Processing Long and Unsegmented Motion Sequences
  - Subsequence Searching in Long Sequences
  - Stream-based Event Detection
- 7) Conclusions and Discussion



# **1** Motion Capture Data: Acquisition and Applications

1.1 Motion Capture Data1.2 Capturing Devices1.3 Applications

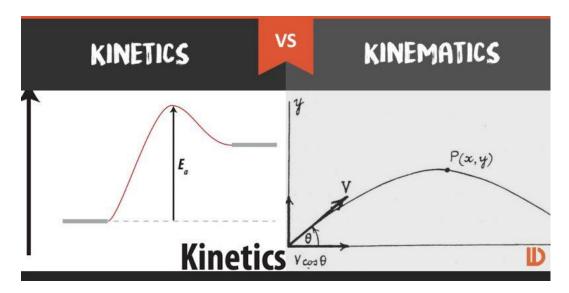


## 1.1 Motion Data



#### Motion data

- A digital representation of a human motion
- Types of data:
  - **Kinematic** motion capture data, recorded by synchronized cams
  - **Kinetic** ground-reaction force data, obtained by pressure plates

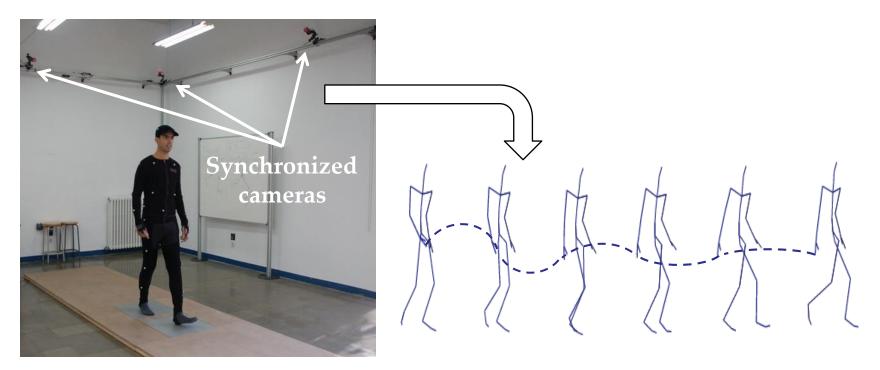


## 1.1 Motion Capture Data



#### Motion Capture Data ~ MoCap Data ~ Motion Data

• Spatio-temporal 3D representation of a human motion

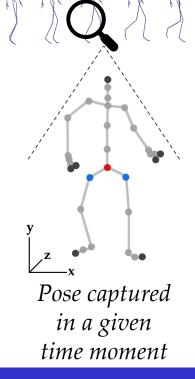


## 1.1 Motion Capture Data



#### Motion capture data

- Continuous spatio-temporal characteristics of a human motion simplified into a discrete sequence of skeleton poses
  - Skeleton pose:
    - Skeleton configuration at a given time moment
    - 3D positions of body landmarks, denoted as joints
- Different views on motion data:
  - A sequence of skeleton poses
  - A set of 3D trajectories of joints



# 1.2 Capturing Devices

### **Types of capturing devices**

- Optical
  - Marker-based (invasive)
  - Marker-less (non-invasive)
- Inertial
- Magnetic
- Mechanical
- Radio frequency



and the second s





## 1.2 Capturing Devices





| Device         | Range<br>[m]  | Framerate<br>[Hz] | Invasive | View field<br>[°] | Tracked<br>subjects | Positional<br>accuracy<br>[mm] | Rotational<br>accuracy<br>[°] | Landmark<br>count |
|----------------|---------------|-------------------|----------|-------------------|---------------------|--------------------------------|-------------------------------|-------------------|
| Kinect v1      | 0.8-4         | 30                | No       | 57                | 2                   | 50-150                         | ?                             | 20                |
| Kinect v2      | 0.5-4.5       | 30                | No       | 70                | 6                   | ?                              | 1-3                           | 25                |
| ASUS Xtion     | 0.8-3.5       | 30                | No       | 58                | ?                   | ?                              | ?                             | ?                 |
| Vicon MX40     | space 7x7     | 120               | Markers  | 360               | ?                   | 0.063                          | ?                             | 32                |
| Xsens MVN      | ?             | 120               | Sensors  | ?                 | 1                   | -                              | 0.5-1                         | 22                |
| Organic Motion | space 4.3x3.8 | 120               | No       | 360               | 5                   | 1                              | 1-2                           | 22                |

# 1.2 Capturing Devices



#### **Capturing devices**

- Optical-based devices are the most commonly used
- Advantages/disadvantages:
  - Invasive accurate | large space | markers | expensive
    - Vicon, MotionAnalysis
  - Non-invasive no markers | small space
    - Accurate but expensive Organic Motion
    - Less accurate but cheap Microsoft Kinect, ASUS Xtion
- Hardware devices and applicable software tools are usually independent
  - iPi Soft marker-less, up to 16 cameras or 4 Kinects

#### • Captured motion data serve as an input for our research



## Applications

- Many application domains where motion data have a great potential to be utilized and automatically processed
  - Computer animation & human-computer interaction
  - Military
  - Sports
  - Medicine
  - Other domains



Sedmidubsky & Zezula

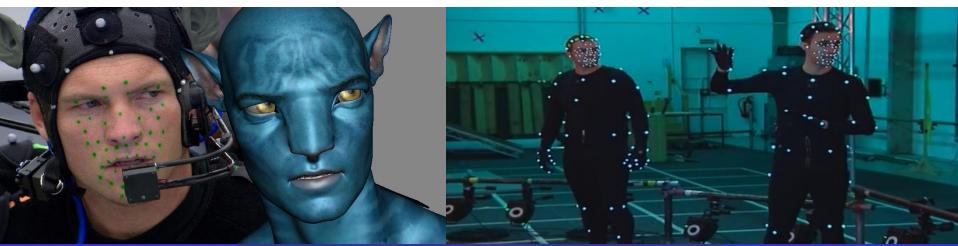


Tutorial - Similarity-Based Processing of Motion Capture Data



#### **Computer animation**

- Make subject (human) movements in movies and computer games as much realistic as possible
  - Games: Far Cry 4, <u>GTA V</u>
  - Movies: Avatar, The Lord of the Rings
- Create/generate new motions by merging movements that follow each other



Sedmidubsky & Zezula



#### Human computer interaction, augmented reality

• Detection of gestures/actions to enable real-time interactions



Sedmidubsky & Zezula

Tutorial - Similarity-Based Processing of Motion Capture Data

October 22, 2018



#### Military

- Interaction with digitally animated characters in live training scenarios in a natural and intuitive way
- Simulation of a combat and conflict-resolving situations
  - To improve the education and training of military forces or healthcare personnel by inserting live role-players



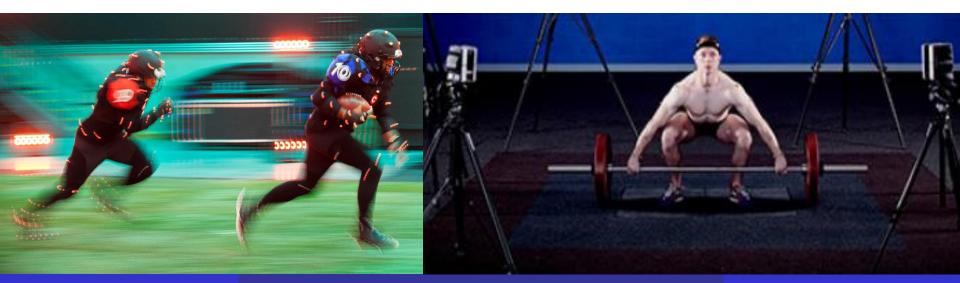
Sedmidubsky & Zezula

13/159



#### **Sports**

- Digital referees detection of fouls
- Digital judges assignment of scores
- Movement analysis to quantify an improvement or loss of performance



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

October 22, 20<u>18</u>

14/159



#### Medicine

- Improvement of the education and training of healthcare personnel including physicians, paramedics and nurses
- Creation of a roadmap to help each patient by showing exactly where and how he or she has gotten better
- Recognition of developmental disabilities or movement disorders





#### **Other domains**

- Law enforcement identification of persons based on their style of walking
- Smart-homes detection of falls of elderly people
- Construction-sites identification of unsafe acts, e.g., speed limit violations of equipment or close proximity between equipment or equipment and workers

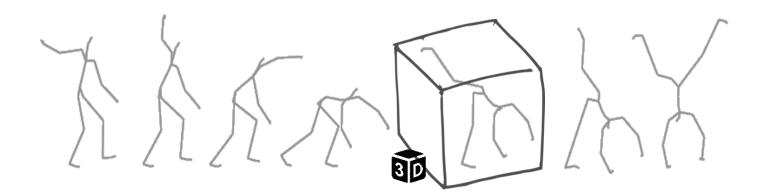


Sedmidubsky & Zezula



## 2 Challenges in Computer-Aided Processing

2.1 Data Volume2.2 Imprecise Data2.3 Operations



## 2 The Big Data Corollaries



#### Shifts in thinking

- From *some to all* more scalability
- From *clean to messy* less determinism (ranked comparisons)
- Loads on a sharp rise usage on decline

#### **Foundational concerns**

• *Scalable* and *secure* data *analysis*, *organization*, *retrieval*, and *modeling* 

### **Technological obstacles**

• *Heterogeneity, scale, timeliness, complexity,* and *privacy* aspects

## 2 The Big Data Corollaries



19/159

#### The (3V) problem: Volume, Variety, Velocity

- Issues:
  - Acquisition what to keep and what to discard
  - Datafication render into data aspects that do not exist in analog form
  - Unstructured data structured only on storage and display
  - Inaccuracy approximation, imprecision, noise

## 2 Motion Data Specifics



#### **Motion data specifics**

- Large volume of data
  - E.g., 31 joints · 3D space · 120 Hz => 11,160 float numbers/second generated => 1.5 TB/year needed to store the data
- Inaccuracy of data captured data can be:
  - Inconsistent (e.g., location of markers)
  - Imprecise (e.g., inaccurate information about positions of joints)
  - Incomplete (e.g., missing information about some joint positions)
- Variety of motion-analysis operations
  - Designing operations, such as similarity comparison, searching, classification, semantic segmentation, clustering or outlier detection, with respect to the spatio-temporal nature of motion data

## 2.1 Data – Types of Motions

#### Motion data types

- Short motions:
  - Semantically-indivisible motions ~ ACTIONS
  - Length typically in order of seconds
  - Database usually a large number of actions
- Long motions:
  - Semantically-**divisible** motions ~ sequences of actions
  - Length in order of minutes, hours, days, or even unlimited
  - Database typically a single long motion processed either as a whole, or in the stream-based nature

Cartwheel (2.1 s)

Figure skating performance (3 mins)

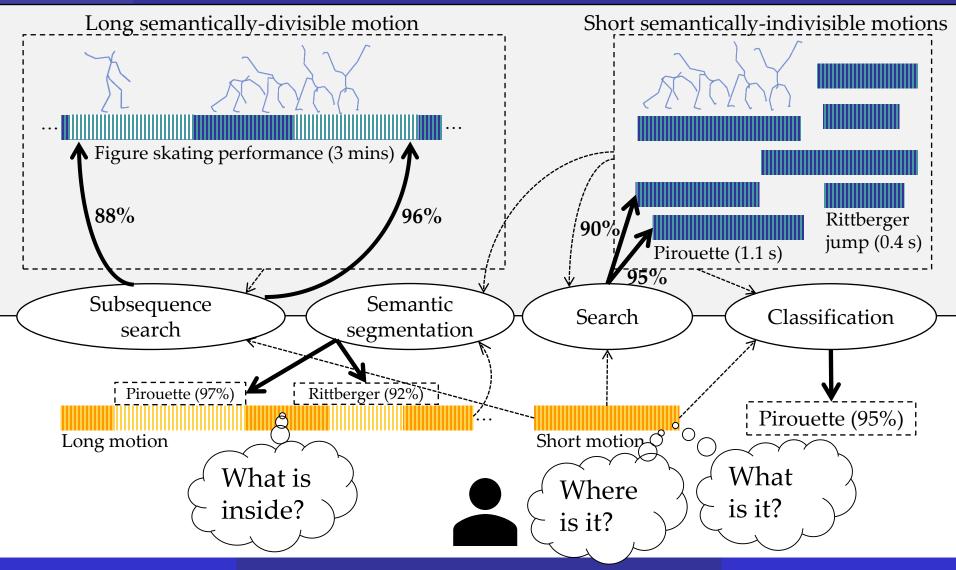


Gait cycle (0.6 s)

ACN

# 2.3 Motion-Analysis Operations





Sedmidubsky & Zezula

Tutorial - Similarity-Based Processing of Motion Capture Data

## 2.3 Operations



#### **Motion-analysis operations**

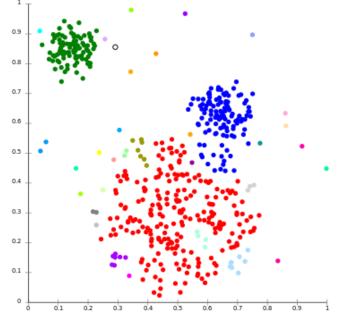
- Search
- Subsequence search
- Classification
- Semantic segmentation
- Other operations:
  - Clustering
  - Outlier detection
  - Joins
  - Mining frequent movement patterns
  - Action prediction

## 2.3 Other Operations – Clustering



#### Clustering

- Suppose each motion as a point in *n*-dimensional space
- Grouping motions in action collections
  - Motions in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters)
- Useful for statistical data analysis

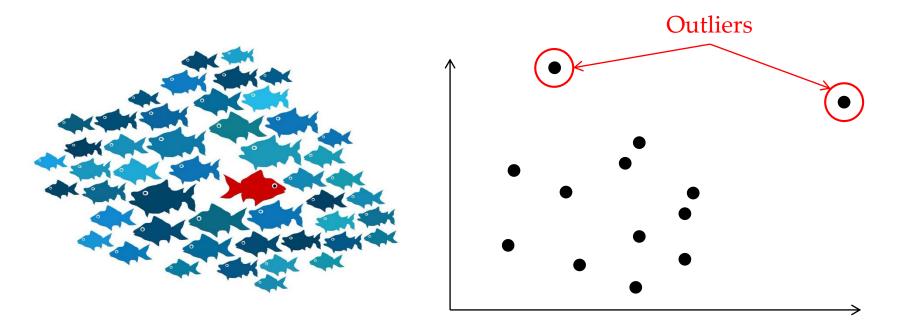


# 2.3 Other Operations – Outlier Detection



#### **Outlier detection**

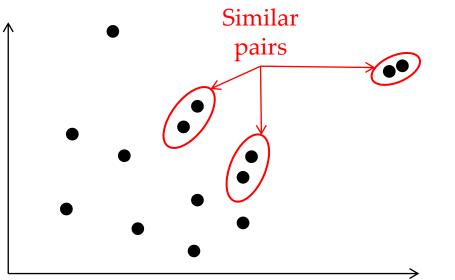
• Identifying motions which significantly deviate from other motion entities



# 2.3 Other Operations – Similarity Join

#### Similarity join

- Finding pairs of similar motions
- Types:
  - Range joins finding all the motion pairs at distance at most *r*
  - k-closest pair joins finding the k closest motion pairs



ACM

## 2.3 Summary of Motion-Analysis Operations



#### **Summary of operations**

| OPERATION                | OPERATION DATA<br>(KNOWLEDGE BASE) | USER INPUT   | OPERATION RESULT                                            |  |
|--------------------------|------------------------------------|--------------|-------------------------------------------------------------|--|
| Search                   | Unannotated actions                | Query action | Actions similar to the query action                         |  |
| Subsequence<br>search    | Unannotated long<br>motions        | Query action | Beginnings/endings of<br>query-similar<br>subsequences      |  |
| Classification           | Labelled (categorized)<br>actions  | Action       | Class of examined action                                    |  |
| Semantic<br>segmentation | Labelled (categorized)<br>actions  | Long motion  | Beginnings/endings of<br>detected and recognized<br>actions |  |

equire annotated (labeled) data

#### => All the operations require the concept of motion similarity

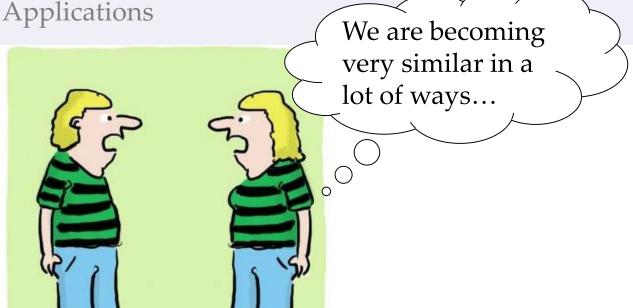
Sedmidubsky & Zezula

October 22, 2018



# **3** Similarity as a General Concept of Data Understanding

3.1 Social-Psychology View/Computer-Science View3.2 Metric Space Model3.3 Applications



Sedmidubsky & Zezula

October 22, 2018

## 3.1 Real-Life Motivation



#### The social psychology view

- Any event in the history of organism is, in a sense, unique
- *Recognition, learning,* and *judgment* presuppose an ability to categorize stimuli and classify situations by similarity
- Similarity (*proximity*, *resemblance*, *communality*, *representativeness*, *psychological distance*, etc.) is fundamental to theories of *perception*, *learning*, *judgment*, etc.
- Similarity is subjective a context-dependent



#### Are they similar?



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

October 22, 2018



#### Are they similar?



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data Oc

October 22, 2018

32/159



#### Are they similar?



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data O

October 22, 2018

33/159



#### Are they similar?



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

October 22, 2018

3.1 Contemporary Networked Media



#### The digital data point of view

- Almost everything that we *see*, *read*, *hear*, *write*, *measure*, or *observe* can be digital
- Users autonomously *contribute* to production of global media and the growth is exponential
- Sites like Flickr, YouTube, Facebook host user contributed content for a variety of events
- The elements of networked media are related by numerous multi-facet links of similarity

Sedmidubsky & Zezula

October 22, 2018

# 3.1 Challenge



#### Challenge

- Networked media database is getting close to the human "fact-bases"
  - The gap between physical and digital world has blurred
- Similarity data management is needed to *connect*, *search*, *filter*, *merge*, *relate*, *rank*, *cluster*, *classify*, *identify*, or *categorize* objects across various collections

#### WHY?

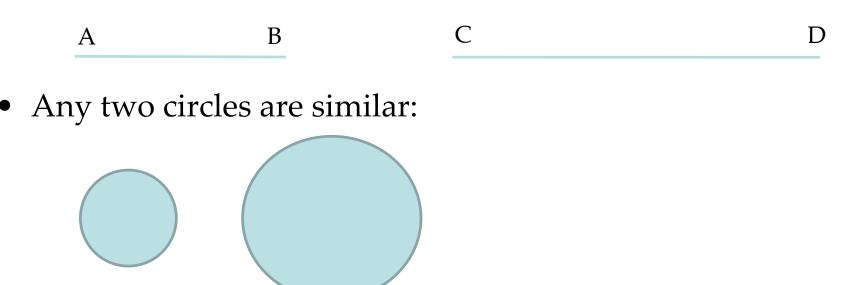
It is the *similarity* which is in the world *revealing* 

## 3.1 Similarity in Geometry



#### Similarity in geometry

- Figures that have the same shape but not necessarily the same size are similar figures
- Any two line segments are similar:

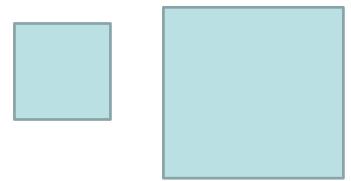


## 3.1 Similarity in Geometry



#### Similarity in geometry

• Any two squares are similar:



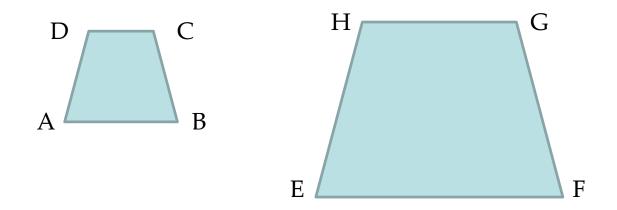
• Any two equilateral triangles are similar:

## 3.1 Similarity in Geometry



## Similarity in geometry

- Two polygons are similar to each other, if:
  - 1) Their corresponding angles are congruent
    - $\angle A = \angle E; \angle B = \angle F; \angle C = \angle G; \angle D = \angle H, and$
  - 2) The lengths of their corresponding sides are proportional
    - AB/EF = BC/FG = CD/GH = DA/HE



## 3.1 Similarity in Geometry



#### Similarity in geometry

- If one polygon is similar to a second polygon, and the second polygon is similar to the third polygon, the first polygon is similar to the third polygon
- In any case: two geometric figures are either similar, or they are not similar at all

## 3.2 Metric Space Model of Similarity

#### **Metric space** $\mathcal{M} = (\mathcal{D}, d)$

- *D* domain of objects
- d(x, y) distance function between objects x and y

$$\forall x, y, z \in D:$$
  

$$d(x, y) > 0$$
  

$$d(x, y) = 0 \Leftrightarrow x = y$$
  

$$d(x, y) = d(y, x)$$
  

$$d(x, y) \le d(x, z) + d(z, y)$$

– non-negativity

ACM

MM

- identity
- symmetry
- triangle inequality

Sedmidubsky & Zezula

# 3.2 Metric Space – Distance Functions

## **Example of distance functions**

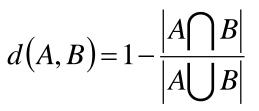
- *L<sub>p</sub>* Minkovski distance for vectors
  - $L_1$  city-block distance
  - $L_2$  Euclidean distance
  - $L_{\infty}$  infinity

$$L_{1}(x, y) = \sum_{i=1}^{n} |x_{i} - y_{i}|$$
$$L_{2}(x, y) = \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}}$$
$$L_{\infty}(x, y) = \max_{i=1}^{n} |x_{i} - y_{i}|$$

- Edit distance for strings
  - Minimum number of insertions, deletions and substitutions

Tutorial - Similarity-Based Processing of Motion Capture Data

- d("application", "applet") = 6
- Jaccard's coefficient for sets *A*, *B*



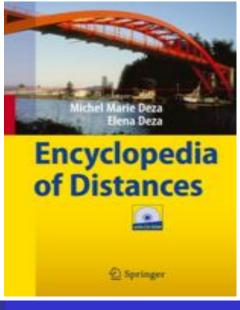
October 22, 2018





## **Example of other distance functions**

- Hausdorff distance
  - For sets with elements related by another distance
- Earth-movers distance
  - Primarily for histograms (sets of weighted features)
- Mahalanobis distance
  - For vectors with correlated dimensions
- and many others see the book



43/159

## 3.2 Metric Space – Search Problem



#### Similarity search problem in metric spaces

- For  $X \subseteq \mathcal{D}$  in metric space  $\mathcal{M}$ , pre-process X so that the similarity queries are executed efficiently
- In metric spaces:
  - No total ordering exists!
  - Queries only expressed by examples!

## 3.2 Metric Space – Partitioning Principles

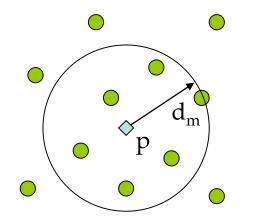


## **Basic partitioning principles**

• For  $X \subseteq \mathcal{D}$  in metric space  $\mathcal{M} = (\mathcal{D}, d)$ 

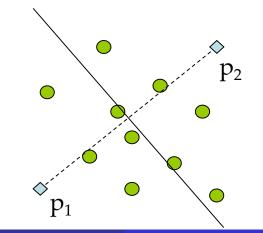
## **Ball partitioning**

Inner set: {  $x \in X \mid d(p, x) \le d_m$  } Outer set: {  $x \in X \mid d(p, x) > d_m$  }



# Generalized hyperplane partitioning

$$\{ x \in X \mid d(p_1, x) \le d(p_2, x) \} \{ x \in X \mid d(p_1, x) > d(p_2, x) \}$$



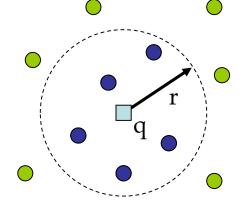
# 3.2 Metric Space – Similarity Queries



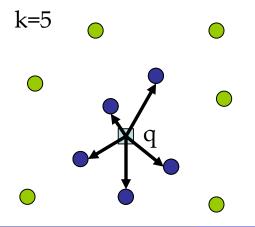
**Range query**  $R(q, r) = \{x \in X \mid d(q, x) \le r\}$  **Nearest neighbor query**  $NN(q) = \{x \in X \mid \forall y \in X, d(q,x) \le d(q,y)\}$ 

$$k-\text{nearest neighbor query} \\ k-NN(q, k) = A \\ A \subseteq X, |A| = k \\ \forall x \in A, y \in X - A, d(q, x) \le d(q, y)$$

"all museums up to 2km from my hotel *q*"



"five closest museums to my hotel *q*"

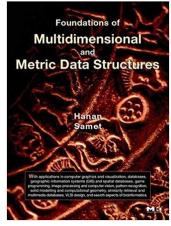


Tutorial – Similarity-Based Processing of Motion Capture Data October 22, 2018

# 3.2 Similarity Search Textbooks



#### Major textbooks on metric searching technologies



H. Samet

Foundation of Multidimensional and Metric Data Structures Morgan Kaufmann, 1,024 pages, 2006

Similarity Search The Metric Space Approach



P. Zezula, G. Amato, V. Dohnal, and M. Batko Similarity Search: The Metric Space Approach Springer, 220 pages, 2005

Teaching materials:

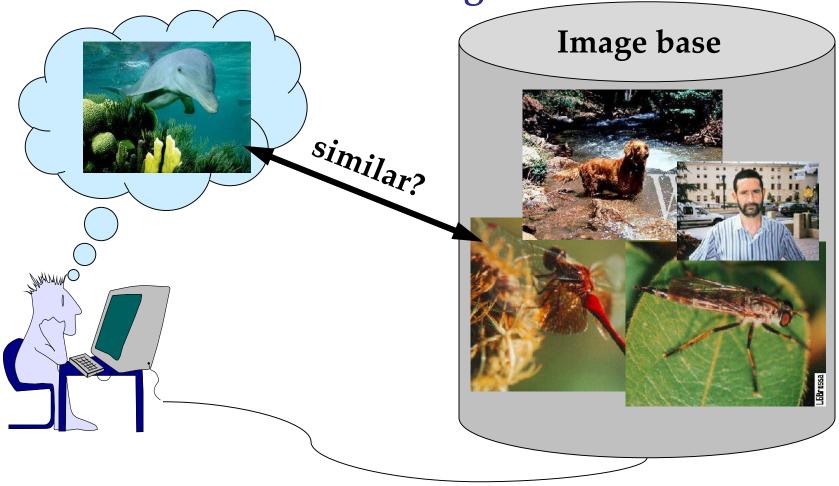
http://www.nmis.isti.cnr.it/amato/similarity-search-book/

Tutorial – Similarity-Based Processing of Motion Capture Data

## 3.2 Content-Based Search



#### **Content-based search in images**



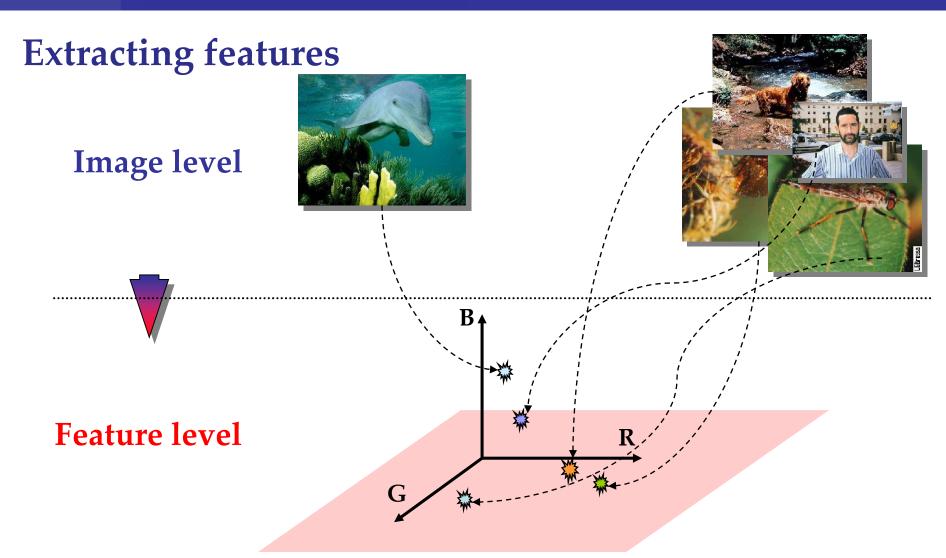
Sedmidubsky & Zezula

Tutorial - Similarity-Based Processing of Motion Capture Data

October 22, 2018

## 3.2 Extracting Features





Sedmidubsky & Zezula

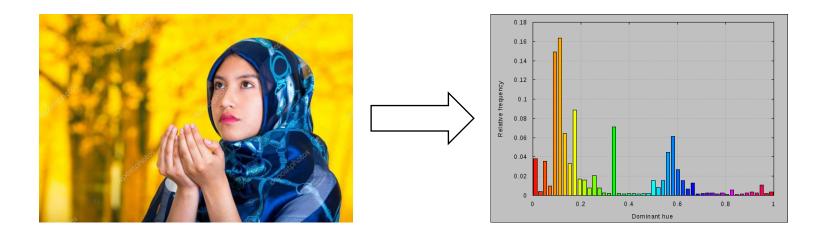
Tutorial – Similarity-Based Processing of Motion Capture Data

October 22, 2018



#### **Examples of features**

- MPEG-7 multimedia content descriptor standard
  - Global feature descriptors color, shape, texture, etc.
  - One high-dimensional (282 dimensions) vector per image





#### Multiple visual aspects





#### **Examples of features**

- Local feature descriptors SIFT, SURF, etc.
  - Invariant to image scaling, small viewpoint change, rotation, noise, illumination



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data



#### **Finding correspondence**



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

October 22, 2018

18 53/159

# 3.3 Applications – Biometrics



### **Biometric similarity**

- Biometrics methods of recognizing a person based on physiological and/or behavioral characteristics
- Two types of recognition problems:
  - Verification authenticity of a person
  - Identification recognition of a person
- Examples:
  - Fingerprints, face, iris, retina, speech, gait, etc.

## 3.3 Applications – Biometrics

## Fingerprints

- Minutiae detection:
  - Detect ridges (endings and branching)
  - Represented as a sequence of minutiae
    - $P=((r_1, e_1, \theta_1), ..., (r_m, e_m, \theta_m))$
    - Point in polar coordinates (r, e) and direction  $\theta$
- Matching of two sequences:
  - Align input sequence with a database one
  - Compute a weighted edit distance
    - $w_{ins, del} = 620$
    - $w_{repl} = [0; 26]$  depending on similarity of two minutiae





# 3.3 Applications – Biometrics

## Hand recognition

- Hand image analysis
  - Contour extraction, global registration
    - Rotation, translation, normalization
  - Finger registration
  - Contour represented as a set of pixels  $F = \{f_1, ..., f_{N_F}\}$
- Matching: modified Hausdorff distance

$$H(F,G) = \max(h(F,G), h(G,F))$$
$$h(F,G) = \frac{1}{N_F} \sum_{f \in F} \min_{g \in G} ||f-g|| \qquad h(G,F) = \frac{1}{N_G} \sum_{g \in G} \min_{f \in F} ||f-g|$$









# 3.3 Applications – Remote Biometrics

## **Recognition process**

• Detection, normalization, extraction, recognition

## **Face recognition**

- Methods:
  - Appearance-based analyze the face as a whole
  - Model-based compare individual features (e.g., eyes, mouth)

## Gait recognition

- Methods based on shape or dynamics of the person:
  - Appearance-based analyze person's silhouettes
  - Model-based compare features (e.g., trajectory, angular velocity)

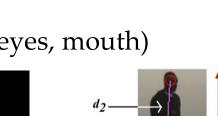


d1



ACV



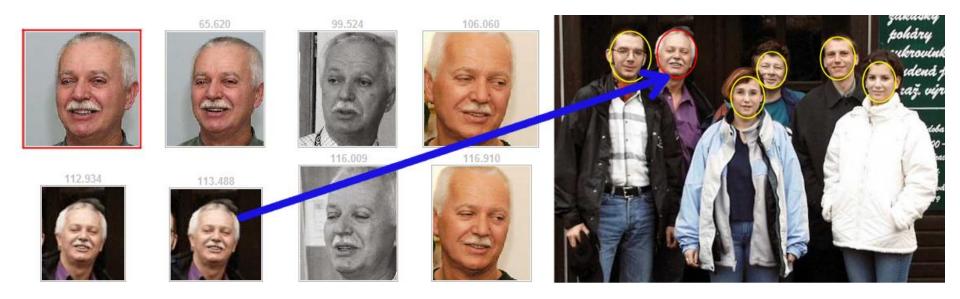


d<sub>1</sub>

# 3.3 Applications – Face Recognition

#### **Face similarity**

- Face detection
- Face recognition distance function
- Similarity search in collections of face characteristics



ACM

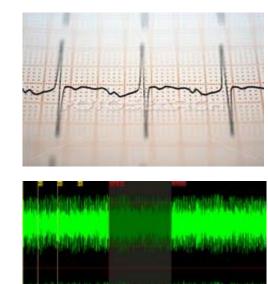
MM

2018

# 3.3 Applications – Signal Processing

## Signal processing

- Vast amount of signals produced:
  - Biomedicine data ECG, CT, EEG, MR
  - Audio data audio similarity, recognition
  - Financial time series analysis, forecasting
  - Time series streams
- Demand for:
  - A graceful handling of such data
  - Flexible reactions to new application needs



ACN

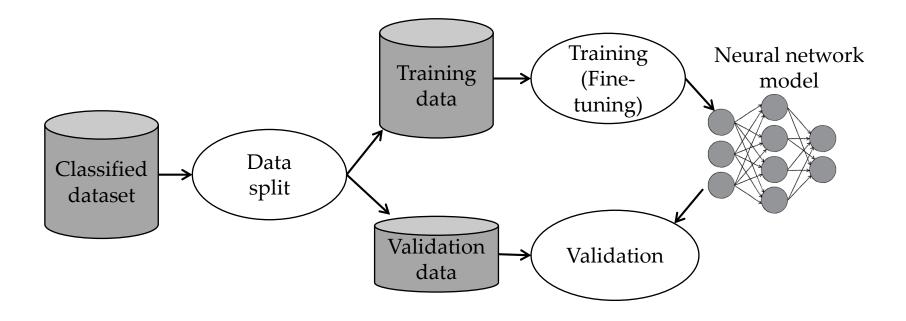
201



# 3.3 Applications – Feature Extraction

#### **Feature extraction**

- Neural networks
  - Deep convolutional neural networks (DCNN)
  - Recurrent neural networks (RNN)



ACM

MM

2018

# 3.3 Applications – Demos



#### **MUFIN similarity-search demos**

- 20M images: <u>http://disa.fi.muni.cz/demos/profiset-decaf/</u>
- Fashion: <u>http://disa.fi.muni.cz/twenga/</u>
- Image annotation: <u>http://disa.fi.muni.cz/annotation/</u>
- Fingerprints: <u>http://disa.fi.muni.cz/fingerprints/</u>
- Time series: <u>http://disa.fi.muni.cz/subseq/</u>
- Multi-modal person ident.: <u>http://disa.fi.muni.cz/mmpi/</u>

## 3 SISAP Conference



#### SISAP (Similarity Search and Applications)

International conference series (<u>http://sisap.org/</u>)



Sedmidubsky & Zezula

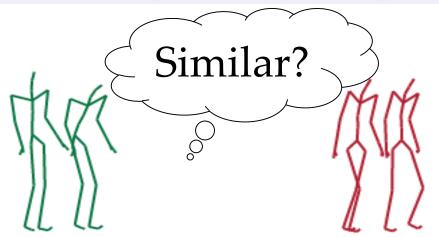
Tutorial - Similarity-Based Processing of Motion Capture Data

62/159



# **4** Similarity of Actions

4.1 Similarity in Motion Data
4.2 Feature-Extraction Principles
4.3 Learning Features through Neural Networks
4.4 LSTM-based Similarity Concept
4.5 Motion-Image Similarity Concept

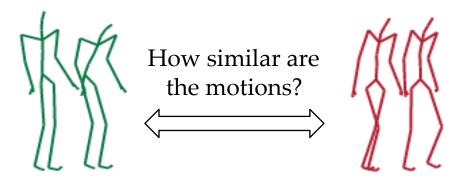


## 4.1 Similarity in Motion Data



### **Similarity of motions**

• Determining similarity of motion sequences is an essential operation for computerized processing of motion data

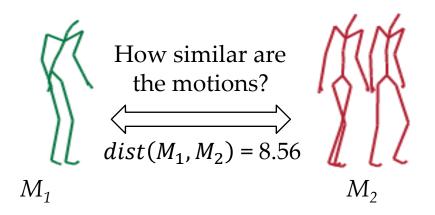


• Similarity is needed everywhere, e.g., for synthesis, clustering, searching, semantic segmentation



#### **Objective of similarity measures**

- Develop an effective and efficient metric distance functions for quantifying similarity of actions
- Metric distance measure  $dist(M_1, M_2) \rightarrow \mathbf{R}_0^+$ 
  - The value 0 means identical motions
  - The higher the value, the more dissimilar the motions are



# 4.1 Challenges of Similarity Measures



## Challenges

- Similarity is application-dependent (*e.g., recognizing daily actions vs. recognizing people based on their style of walking*)
- Subjects have different bodies (e.g., child vs. adult)
- The distance function needs to cope with spatial and temporal deformations
  - The same action (*e.g., kick*) can be performed at different:
    - Styles (e.g., frontal kick vs. side kick) and
    - Speeds (e.g., faster vs. slower)



#### Feature extraction and comparison

- Distance is very rarely evaluated on the captured skeleton sequences of 3D joint coordinates but rather on content-preserving features extracted from motions
  - A motion feature is usually represented as a set of time series or as a high-dimensional vector of real numbers
  - A motion feature is extracted in a pre-processing step



# 4.2 Types of Features



68/159

## Granularity

- Pose-based features a set of times series
- Motion-based features a fixed-length vector

## Space dependence

- Space-invariant features
- Space-dependent features

## Engineering

- Hand-crafted features manual feature engineering
- Machine-learned features learning features automatically

## 4.2 Granularity of Features



#### **Granularity of features**

- Pose-based features a set of times series
  - Each time series corresponds to specific characteristics computed for each pose (e.g., left-knee angle rotation)
  - Time-series length is equal to the number of poses (motion length)

<4.2, 4.1, 4.0, 3.9, 3.8, 3.8, 3.7, 3.8, 3.9, 4.0, ...> <9.2, 9.1, 9.0, 9.9, 9.8, 9.8, 9.7, 9.8, 9.9, 9.0, ...> :

- Motion-based features a fixed length vector
  - Vector dimensions correspond to aggregated/learned characteristics over the whole motion (e.g., average velocity of individual joints)

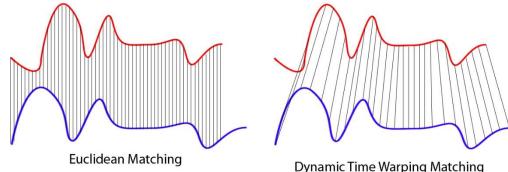
<0, 0, 5.2, 8.1, 0, 2.3, 1.1, 0.5>

## 4.2 Granularity of Features



### **Comparison of features**

- Pose-based feat. series of different lengths compared by:
  - Time-warping functions, e.g., Dynamic Time Warping (DTW)
  - Standard functions applied to normalized series in time dimension
    - Euclidean distance
    - Cosine distance



- Motion-based features fixed-length vectors compared by standard functions:
  - Euclidean distance
  - Cosine distance

October 22, 2018

# 4.2 Space-Dependence of Features



#### Feature dependence on a space

- Space-invariant features
  - Transformation from the original 3D space to a positionindependent space
  - E.g., joint-angle rotations, distances between joints, velocities or accelerations of joints
- Space-dependent features
  - Feature values somehow related to the original 3D space
  - E.g., absolute or relative 3D joint positions
- Input data can be normalized before feature extraction

# 4.2 Input Data Normalization



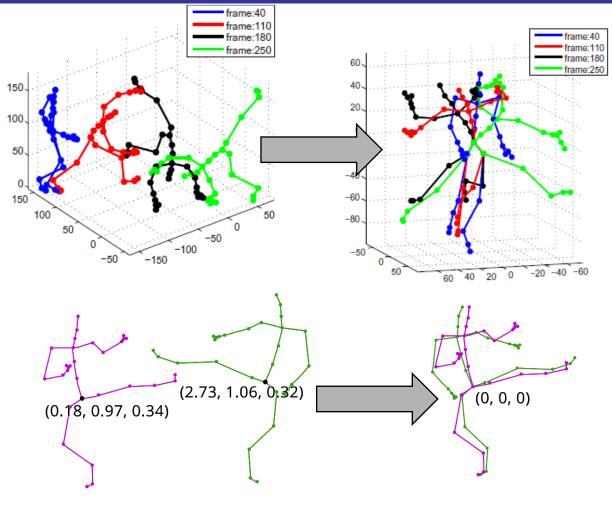
72/159

## Normalization of:

- Position
- Orientation
- Skeleton size

## Granularity:

- Single pose
- Whole motion



# 4.2 Feature Engineering



## **Feature engineering**

- Developing a program (extractor) for extracting the features from input motions automatically
- Types of engineering:
  - Hand-crafted features
    - The program is manually developed by a domain expert
  - Machine-learned features
    - The program is automatically learned using a given machine-learning technique
    - Requires a large amount of categorized training data

"Coming up with features is difficult, time-consuming, requires expert knowledge." –Andrew Ng

# 4.2 Hand-Crafted Features



### Hand-crafted features

- Very good knowledge of data domain is needed
- Very specialized in what they express

## **Existing hand-crafted-based approaches**

- Classification of neurological disorders of gait
  - 17 scalars (e.g., gait velocity, stride length, step freq.)
     [Pradhan et al., Automated classification of neurological disorders of gait using spatio-temporal gait parameters, Journal of Electromyography and Kinesiology, 2015]
- Daily-activity search
  - 28 joint-angle rotations

[Sedmidubsky et al., A key-pose similarity algorithm for motion data retrieval, 2013]

– 40 relational frame-based characteristics

[Muller et al., Efficient and robust annotation of motion capture data, 2009]

# 4.3 Learning Features



75/159

## **Feature learning**

- Goal utilizing machine-learning techniques to automatically discover the representations needed for feature detection or classification from input data
- Machine learning a type of artificial intelligence that provides computers with the ability to learn without being explicitly programmed

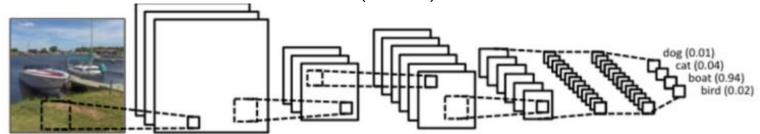
## **Deep learning**

• Part of machine learning which derives meaning out of data by using a hierarchy of multiple layers that mimic the neural networks of our brain

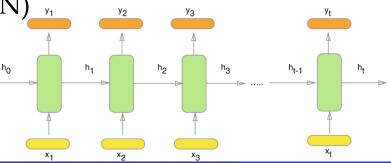
# 4.3 Architectures for Deep Learning

## Deep learning

- If large amounts of data are provided, the system begins to understand them and respond in useful ways
- Several architectures:
  - Convolutional neural networks (CNN)



– Recurrent neural networks (RNN)



ACM

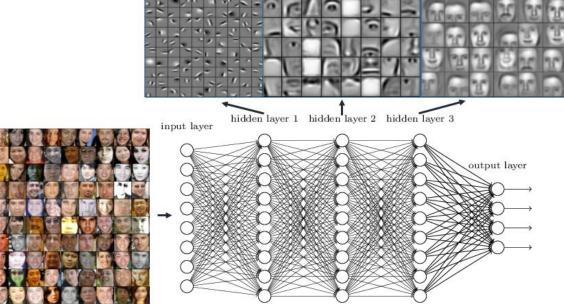
 $\mathbf{N}\mathbf{N}$ 

2018



### **Convolutional neural networks (CNN)**

- Consist of a hierarchy of layers
- Each layer transforms the data into more abstract representations (e.g., edge -> nose -> face)
- The output layer combines the features to make predictions



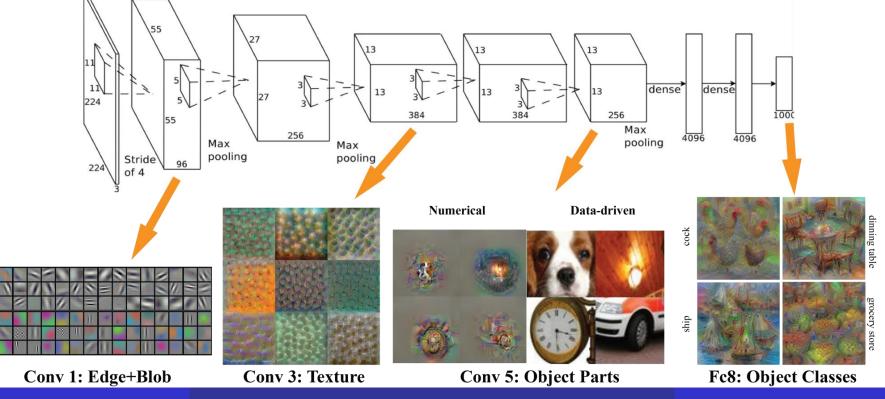


October 22, 2018

79/159

## **Convolutional neural network (CNN) – AlexNet**

- The last layer with 1,000 output categories
- Output of any layer can be used as a feature



Sedmidubsky & Zezula

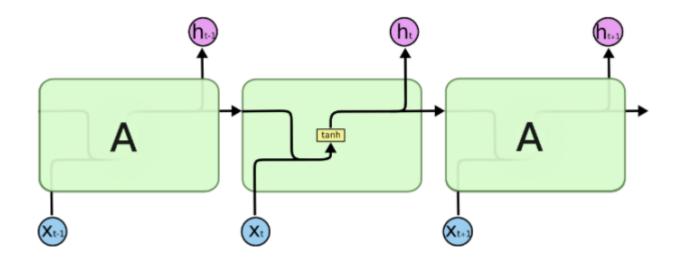
Tutorial – Similarity-Based Processing of Motion Capture Data

# 4.3 Recurrent Neural Networks



### **Recurrent neural networks (RNN)**

- RNN cells remember the inputs in internal memory, which is very suitable for sequential data
- The output vector's contents are influenced by the entire history of inputs

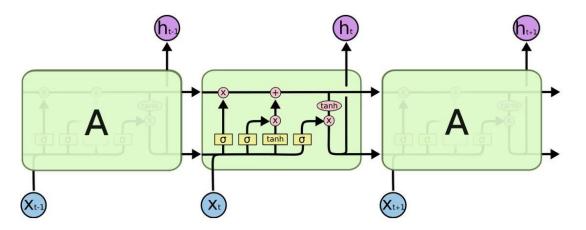


# 4.3 Recurrent Neural Networks



### **Recurrent neural networks (RNN)**

- Long-Short Term Memory (LSTM) networks:
  - Learn when data should be remembered and when they should be thrown away
  - Well-suited to learn from experience to classify, process and predict time series when there are very long time lags of unknown size between important events



# 4.3 Deep Learning Summary



## Summary of deep learning

- It is no magic! Just statistics in a black box, but exceptional effective at learning patterns
- Excels in tasks where a basic unit (e.g., joint coordinate) has a very little meaning in itself, but the combination of such units has a useful meaning
- Requirements:
  - Measurable and describable goals (define the cost)
  - Large dataset of a good quality (input-output mappings)
  - Enough computing power (GPU instances)

# 4.3 Existing Feature-Learning Approaches



## **Existing deep-learning approaches**

- Daily-activity classification
  - 16–256D float vectors compared by the Euclidean distance [Coskun et al.: Human Motion Analysis with Deep Metric Learning. ECCV, 2018]
  - 4,096D float vectors compared by the Euclidean distance
     [Sedmidubsky et al.: Probabilistic Classification of Skeleton Sequences. DEXA, 2018]
- Daily-activity search
  - 160D bit vectors compared by the Hamming distance
     [Wang et al.: Deep signatures for indexing and retrieval in large motion databases. Motion in Games, 2015]
  - 4,096D float vectors compared by the Euclidean distance
     [Sedmidubsky et al.: Effective and efficient similarity searching in motion capture data. Multimedia Tools and Applications, 2018]
- Person identification
  - 64D float vectors compared by the Euclidean distance

[Coskun et al.: Human Motion Analysis with Deep Metric Learning. ECCV, 2018]

## 4.3 Summary of Features



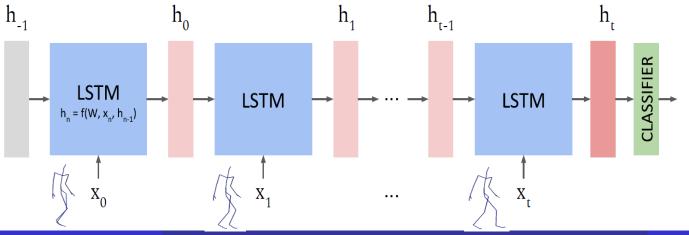
### Advantages/disadvantages of features

|                                | HAND-<br>CRAFTED                        | MACHINE-<br>LEARNED                           |
|--------------------------------|-----------------------------------------|-----------------------------------------------|
| Accuracy (descriptive power)   |                                         | $\bigcirc$                                    |
| Interpretability of dimensions | $\odot$                                 |                                               |
| Prerequisites                  | Very good<br>scenario<br>knowledge      | Many example<br>categorized<br>motions        |
| Application                    | More-easily<br>describable<br>scenarios | Most scenarios<br>with some<br>categorization |



## LSTM-based similarity concept

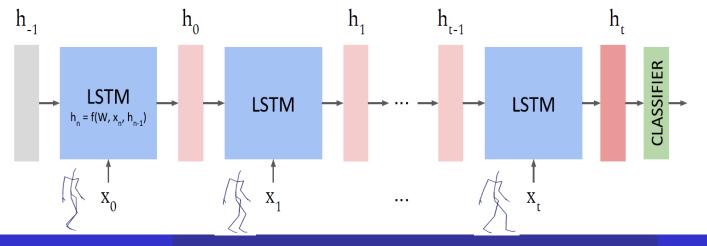
- Learning features based on classified training data
- LSTM network is ideal to model sequences of poses
- Sequence of LSTM cells, where output state depends on the current input and the previous state
  - Output state  $h_i$  of the *i*-th cell is fed to the next (*i*+1)-th cell
  - Number of states/cells corresponds to the number of poses (*t*)



85/159



- The last state  $h_t$  can be used as a feature
- Size of each state  $h_i$  is a user-defined parameter
  - Suitable state size of 512 / 1,024 / 2,048 dimensions



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

86/159

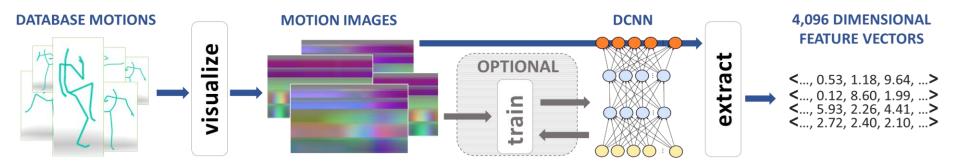
ACM



## Motion-image similarity concept

[Sedmidubsky et al.: Effective and efficient similarity searching in motion capture data. Multimedia Tools and Applications, 2018]

- Deep-learned 4,096D features compared by the Euclidean distance function
  - Very successfully evaluated in classification of daily activities
- Suitable for motions in order of seconds (e.g., gait cycles)

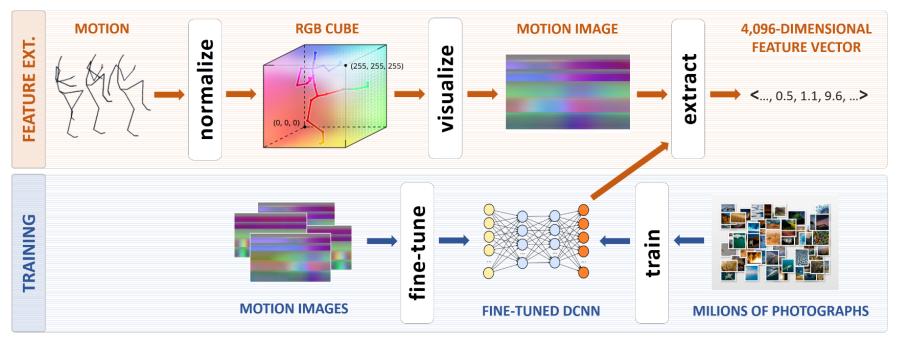


# 4.5 Feature Extraction



### Feature extraction steps

- 1) Normalizing motion data (optional context-dependent step)
- 2) Transforming normalized data into a 2D motion image
- 3) Extracting a 4,096D feature from the image using a DCNN



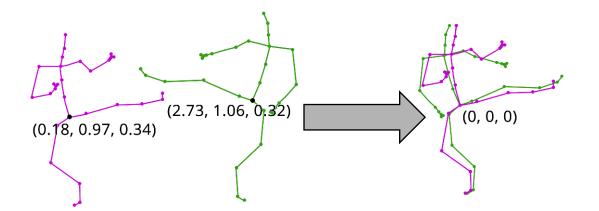
Sedmidubsky & Zezula

Tutorial - Similarity-Based Processing of Motion Capture Data

#### ACM MM 2018

### Feature extraction steps

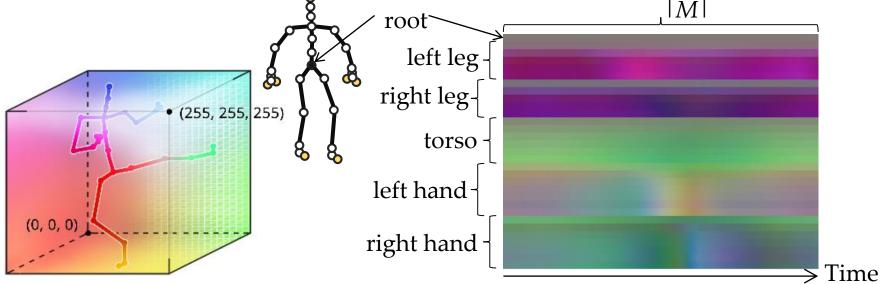
- 1) Normalizing motion data
  - Optional step its utilization depends on a target application
  - Normalizing each pose independently vs. conditionally
  - E.g., position, orientation, and skeleton-size normalization in each pose independently is suitable for classifying daily activities





### Feature extraction steps

- 2) Transforming data into a 2D motion image
  - Sizing an RGB cube to fit all possible poses of motion *M*
  - Fitting each motion pose into the center of the RGB cube to represent each joint position by a specific color
  - Building the motion image by composing joint-position colors



Sedmidubsky & Zezula

Tutorial - Similarity-Based Processing of Motion Capture Data

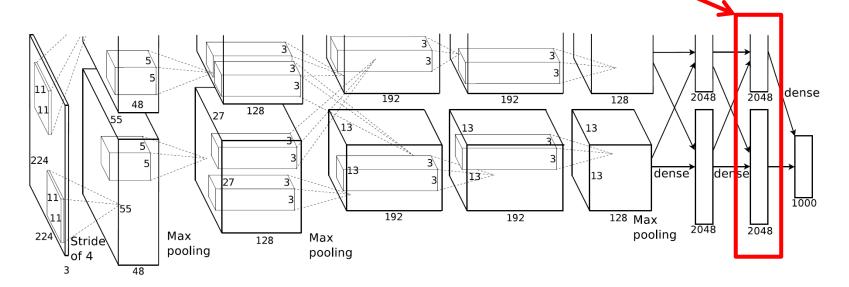
October 22, 2018 90/159

## 4.5 Feature Extraction



### **Feature extraction steps**

- 3) Extracting a 4,096D feature from the image using a CNN
  - CNN = AlexNet pretrained on 1M ImageNet photos categorized in 1,000 classes (e.g., green mamba, espresso, projector)
    - Optionally fine-tuned on the domain of motion images
  - 4,096D feature = output of the last hidden CNN layer.

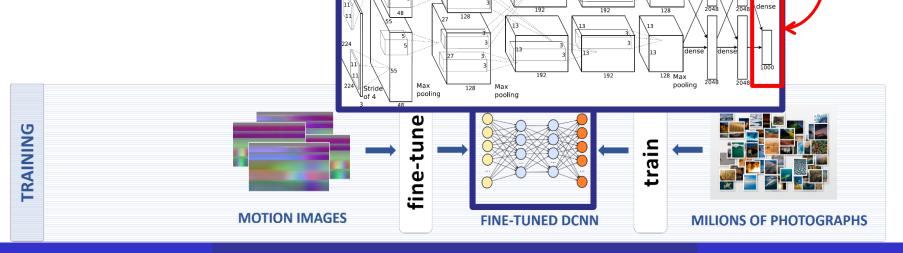


# 4.5 Increasing Accuracy of Features



### **Fine-tuning the CNN ~ transferred learning**

- Increases a descriptive power of the extracted features
- Utilizes a pre-trained CNN model, not-necessary originally trained on the same domain of images
- Requires additional domain-specific training images classified into categories (only last CNN layer is changed)



Sedmidubsky & Zezula

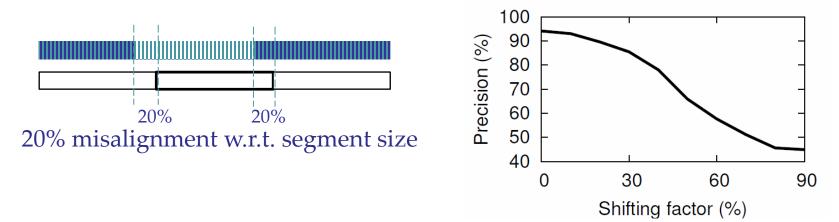
Tutorial – Similarity-Based Processing of Motion Capture Data

# 4.5 Elasticity Property



## **Elasticity property**

- Motion-image similarity concept exhibits elasticity property
  - Classification accuracy decreases only slightly when up to 20% of motion content is misaligned (i.e., shifted)



 Evaluated on the action recognition scenario using the 1NN classifier on a dataset of 1,464 HDM05 motions divided into 15 categories

# 4.5 Summary



94/159

## Summary of the motion-image similarity concept

- Suitable for motions in order of seconds (e.g., gait cycles)
  - Each motion image resized to 227x227 pixels for the DCNN
  - 227 pixels in time dimension correspond to the motion of ~2 seconds, when considering the frame rate of 120Hz
- Feature extraction time of ~25ms using a GPU impl.
- Advantages:
  - Utilizing a pre-trained CNN does not require large amounts of training data and training time
  - Combination of advantages of machine-learning techniques and distance-based methods
  - Even motions of categories that have not been available during the training phase are well clustered

## 4.5 Summary



# Advantages/disadvantages of the CNN-based and LSTM-based similarity concepts

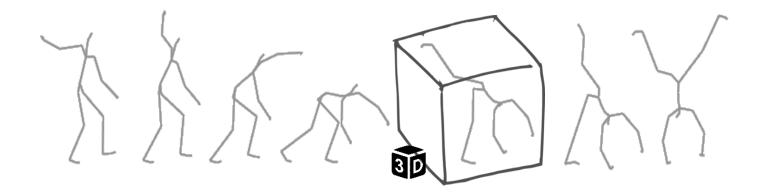
|                                             | CNN-BASED | LSTM-BASED |
|---------------------------------------------|-----------|------------|
| Accuracy (descriptive power<br>of features) | $\odot$   | $\odot$    |
| Volume of training data                     | $\odot$   | $\bigcirc$ |
| Input data preprocessing                    |           | $\bigcirc$ |
| Length of motions                           |           | $\bigcirc$ |
| Feature-size flexibility                    |           | $\bigcirc$ |
| Complexity of network<br>parametrization    |           |            |

October 22, 2018



# **5** Classification of Segmented Motions

5.1 Classification Principles5.2 Machine-Learning Classification5.3 Nearest-Neighbor Classification5.4 Confusion-based Classification5.5 Evaluation of Classifiers





**Action classification** – the problem of identifying a single class (category) to which a query movement action belongs, on the basis of a training set of already categorized motions

• Sometimes referred to as action recognition



# 5.1 Action Classification



## **Knowledge base**

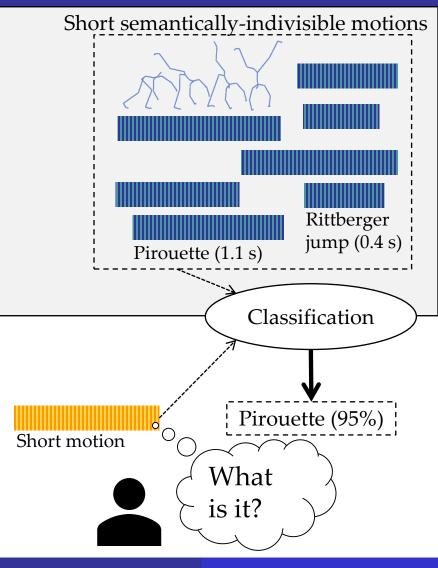
• Collection of labeled short actions ~ training data

## Input

 Unlabeled short action ~ query action

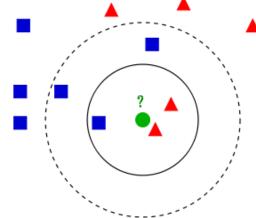
## Output

- Estimated class of the query
- Probability of the query action being a member of each of the possible classes



# 5.1 Action Classification





## Action recognition approaches

- *k*-nearest-neighbor (*k*NN) classifiers
  - Require an effective similarity model (features + distance function)
  - Search for the *k* most similar actions with respect to the query
  - Rank the retrieved actions to estimate the query class (probability)
- Machine-learning (ML) classifiers
  - Learn the representation of classes from the provided training data
  - Query action is directly classified (usually in constant time)
  - Many approaches support vector machines, decision trees, Bayesian networks, artificial neural networks

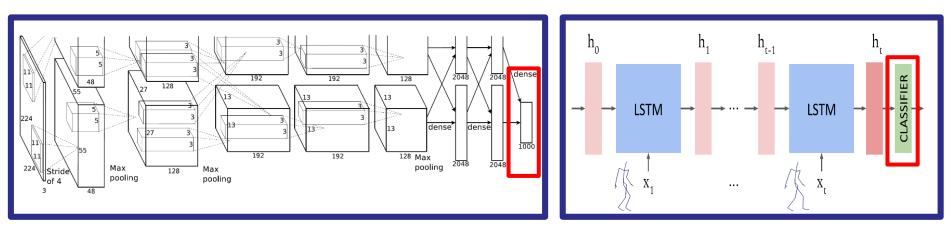
99/159

## 5.2 ML-Based Classification



## Neural-network-based classifiers

- Suitable architectures:
  - Convolutional (CNN) or recurrent (RNN) neural networks
- Training a network with categorized actions
  - (Re)Training is time-consuming
  - Network parameters are updated by processing each action
- Classifying an action without change of parameters

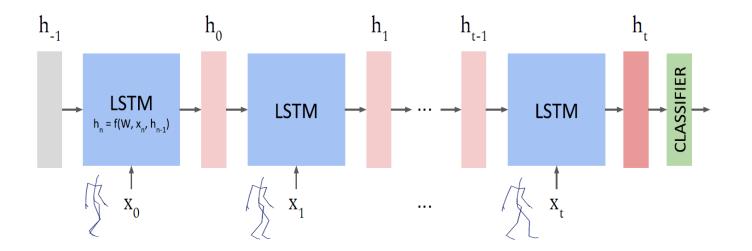


## 5.2 LSTM-Based Classifier



## LSTM-based classifier (1kLSTM)

- Size of each state is set to 1,024 dimensions
- Classifier maps the last hidden state *h*<sub>t</sub> into 122 categories



# 5.3 1NN-Based Classification



## **1NN classification**

- Searching for the nearest neighbor based on the motion similarity
- Class of the nearest neighbor considered as class of the query

**Query** action

feature vector

<..., 0.93, 10.1, 2.43, ...

**UMP** class feature vectors <..., 0.53, 10.8, 4.64, ...> <..., 0.12, 8.60, 1.99, ...>

8.7 JUMP 10.9 KICK 13.2 KICK 14.3 KICK feature vectors > JUMP (100%)

KICK class

..., 8.93, 10.1, 2.43, ...>

<...., 7.42, 7.14, 2.27, ...>

<..., 3.93, 6.26, 3.41, ...>

102/159

# 5.3 LSTM-Based 1NN Classifier

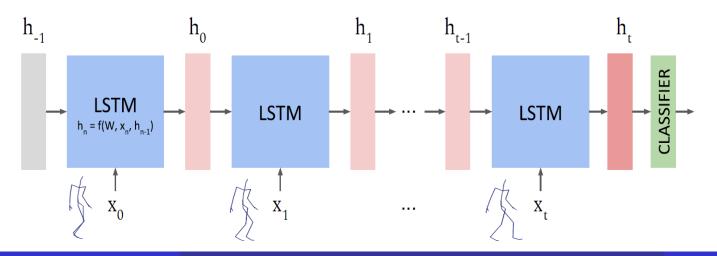


## LSTM-based similarity concept

- The last hidden state *h<sub>t</sub>* of 1,024 dimensions used as the action feature ~ 1kLSTM features
- The features of actions compared by the Euclidean function

# **1NN classifier on 1kLSTM features**

• 1NN classification using the 1kLSTM features

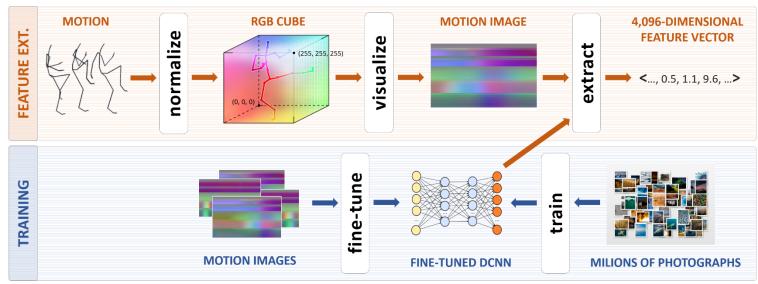


# 5.3 Motion-Image-Based 1NN Classifier



## Motion-image 1NN classifier (1NN on 4kMI)

- 1NN classifier
- Similarity comparison:
  - Deep 4,096D features compared by the Euclidean distance function



[Sedmidubsky et al.: Effective and efficient similarity searching in motion capture data. Multimedia Tools and Applications, 2018]

Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

October 22, 2018

# 5.3 kNN-Based Classification



## **1NN classification**

- Problems relying on the nearest neighbor only
   *k*NN classification
- Possible design considering the output class as the class with the highest number of occurrences within *k* results
   If more candidates exist, take that with the minimum distance
- Problems:
  - When *k* is higher than the count of available class samples
  - Similarities of neighbors are not considered
  - Example: query action of the jump class

2. 10.9 KICK

3. 13.2 KICK

8.7 JUMP

1.

k=4:

October 22, 2018



106/159

## Weighted-distance *k*NN classifier (*k*NN\_WD)

- Considering not only the number of votes but also the similarity of neighbors
  - Normalizing the neighbor distance with respect to the *k*-th neighbor
    - Effective when distances of nearest neighbors vary across classes
  - Computing class relevance by summing relevance of class neighbors (1 – normalized distance)
- Example scenario query action belonging to the jump class

| Original                                                                              | Normalized                                                   | Relevance                                                    | Relevance                                                                                             |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| distances                                                                             | distances                                                    | of neighbors                                                 | of classes                                                                                            |
| <ol> <li>8.7 JUMP</li> <li>10.9 KICK</li> <li>13.2 KICK</li> <li>14.3 KICK</li> </ol> | 1. 0.55 JUMP<br>2. 0.69 KICK<br>3. 0.84 KICK<br>4. 0.91 KICK | 1. 0.45 JUMP<br>2. 0.31 KICK<br>3. 0.16 KICK<br>4. 0.09 KICK | $0.45 \text{ JUMP} \Rightarrow \text{JUMP (45\%)}$ $0.56 \text{ KICK} \Rightarrow \text{KICK (55\%)}$ |

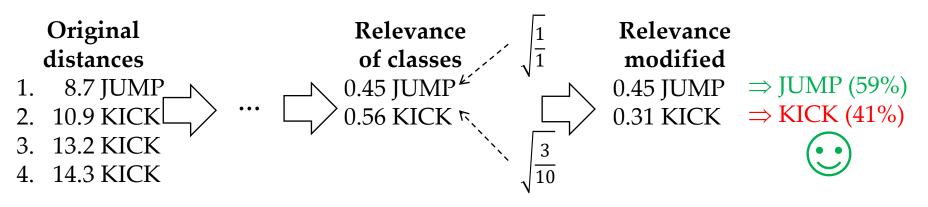
# 5.3 kNN-Based Classification



107/159

### Training-class-sizes *k*NN classifier (*k*NN\_TCS)

- *k*NN\_WD + considering also the count of class samples
  - Class relevance additionally modified by the square root of ratio between the number of class samples being among the *k*-nearest neighbors and the number of available training samples of that class
- Example scenario:
  - Knowledge base **10** samples in kick class, **1** sample in jump class
  - Query action belonging to the jump class



# 5.4 Confusion-Based Classifier

### **Motivation**

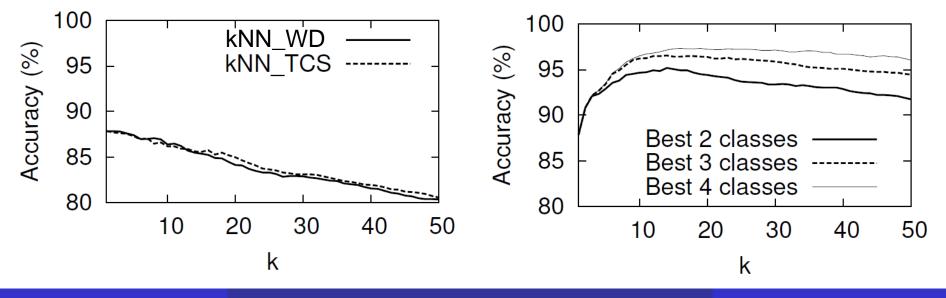
- 1NN classifier: ~87%
- *k*NN\_WD/*k*NN\_TCS classifier: <87%
- kNN\_TCS "benevolent" classifier: ~95%



benevolent

ACM

2018



# 5.4 Confusion-Based Classifier



### Idea

- Use *k*NN\_TCS classif. to determine the 2 most ranked classes
- Re-rank the *k*-nearest neighbors based on additional sim. functions that well separate that 2 most ranked classes

# **Training phase – additional similarity functions**

- Learn a class confusion matrix *cm* (of size *#classes* x *#classes*) for each of *n* additional similarity functions
  - −  $cm^i[C_1, C_2] \in [0, 1]$  − confusion of classes  $C_1$  and  $C_2$  based on the *i*-th similarity function ( $i \in [1, n]$ )
    - cm<sup>i</sup>[C<sub>1</sub>, C<sub>2</sub>] = 0 indicates that the *i*-th function perfectly separates the motions of classes C<sub>1</sub> and C<sub>2</sub>; with an increasing value, the separability decreases
  - $md^i$ [ $C_1, C_2$ ] ∈ **R** maximum distance between motions of classes  $C_1$  and  $C_2$ , with respect to the *i*-th similarity function

# 5.4 Confusion-Based Classifier



## **Classification phase**

- 1) Identifying the two most ranked classes
  - Utilizing the kNN\_TCS classifier
- 2) Weighting similarity functions
  - Considering only the function(s) with the least confusability
- 3) Re-ranking and classifying neighbors
  - Aggregating weighted distances between the query and each neighbor
  - Re-ranking the neighbors by the computed distances
  - Outputting the class of the re-ranked nearest neighbor



#### **Classification phase**

1) Identifying the most ranked classes  $C_1$  and  $C_2$ 

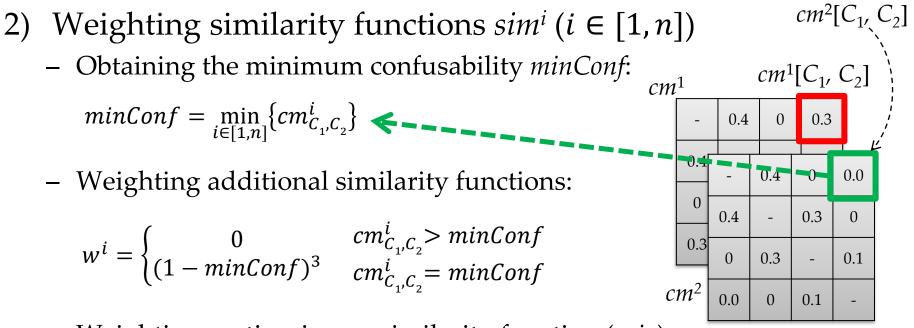
#### kNN TCS

- 8.7 KICK 1
- 2. 10.9 JUMP
- 3. 13.2 KICK
- 4. 14.3 KICK
- 5. 14.4 JUMP
- 6. 14.8 JUMP
- 7. 16.2 PUNCH

 $C_2$  – the second most ranked class ⇒ JUMP (30%)<  $\Rightarrow$  PUNCH (15%)



## **Classification phase**



- Weighting motion-image similarity function (*orig*):

$$w^{orig} = max \left\{ (1 - cm^{orig}_{C_1, C_2})^3, 1 - (1 - minConf)^3 \right\}$$



## **Classification phase**

- 3) Re-ranking and classifying neighbors
  - Weighted distance is normalized based on the localized classpairwise maximum distance

$$rerank(Q, M) = w^{orig} \cdot sim^{orig}(Q, M) / md^{orig}_{C_1, C_2} + \sum_{i=1}^{n} w^i \cdot sim^i(Q, M) / md^i_{C_1, C_2}$$

$$Q$$
 - query action to be classifiedkNN\_TCSRe-ranked NNs $M$  - known labeled action1.8.7 KICK1.2.7 JUMP $sim^i$  -  $i$ -th additional distance function1.8.7 KICK1.2.7 JUMP $md^i$  - matrix of class-pairwise max. distances1.8.7 KICK3.4.8 JUMP4.14.3 KICK3.4.8 JUMP4.8.9 KICK5.14.4 JUMP5.9.2 KICK6.14.8 JUMP6.9.6 KICK7.10.2 PUNCH7.10.2 PUNCH $\Rightarrow$  KICK (55%) $\Rightarrow$  JUMP (100%) $\Rightarrow$  JUMP (100%) $\Rightarrow$  PUNCH (15%) $\Rightarrow$  SUMP (100%)



#### **Additional 3 similarity functions**

- Manhattan (*L*<sub>1</sub>) distance comparing these features:
  - Joint trajectory length 31D feature vector, where each dimension corresponds to the total trajectory length of the specific joint
  - Normalized joint trajectory length (~joint speed) 31D feature vector corresponding to the previous feature where all dimensions are additionally divided by the length of the motion sequence
  - Maximum axis distance 93D feature vector whose dimensions correspond to the maximum reachable coordinate separately in the x/y/z axis of each joint

## 5.5 Classification Dataset



#### HDM05 dataset

- Acquired by Vicon (120 Hz sampling, 31 body joints)
- 5 actors, 102 long motion sequences, 68 minutes in total
- Ground truth 2,328/2,345 short actions in 122/130 classes
  - Shortest and longest samples: 13 frames (0.1s) and 900 frames (7.5s)
  - Action classes corresponding to daily/exercising activities:
    - Clap with hands 5 times
    - Walk two steps, starting with left leg
    - Turn left
    - Frontal kick by left leg two times
    - Cartwheel, starting with left hand

## 5.5 Comparison of Classification Methods



- HDM05 dataset 2,328/2,345 samples in 122/130 classes
- 2-fold cross validation (50% of training data)
  - Only about 10 action samples per class for training on average

| Method                |                                          | Accuracy (%) |         |
|-----------------------|------------------------------------------|--------------|---------|
|                       |                                          | HDM-122      | HDM-130 |
| Related<br>approach   | Huang et al. (2016)                      | N/A          | 75.78   |
|                       | Laraba et al. (2017)                     | N/A          | 83.33   |
|                       | Li et al. (2018)                         | N/A          | 86.17   |
| Presented<br>approach | 1NN on 4kMI (2017)                       | 87.24        | 86.79   |
|                       | 1NN on 4kMIE (2017)                      | 87.84        | 87.38   |
|                       | Confusion-based 15NN_TCS on 4kMIE (2018) | 89.09        | 88.78   |
|                       | 1NN on 1kLSTM (2018)                     | 90.60        | N/A     |
|                       | 1kLSTM classification (2018)             | 91.20        | N/A     |

## 5.5 Summary



# Advantages/disadvantages of the *k*NN and ML classifiers

|                                              | kNN-BASED | ML-BASED |
|----------------------------------------------|-----------|----------|
| Accuracy                                     | $\odot$   | $\odot$  |
| Training time                                |           |          |
| Adaptability to a changing<br>knowledge base | $\odot$   |          |
| <b>Classification efficiency</b>             |           | $\odot$  |

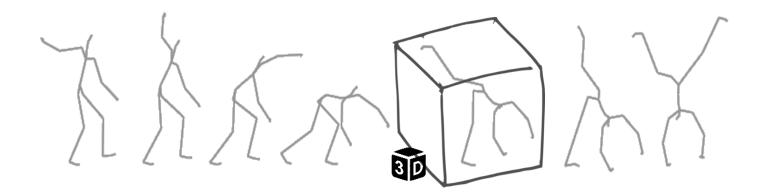
• Demo: <u>http://disa.fi.muni.cz/mocap-demo-classification/</u>

Sedmidubsky & Zezula



## 6 Processing Long and Unsegmented Motion Sequences

6.1 Processing Long Motions6.2 Subsequence Search6.3 Sequence Annotation

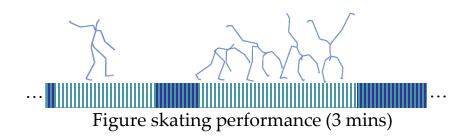


## 6.1 Long Motions



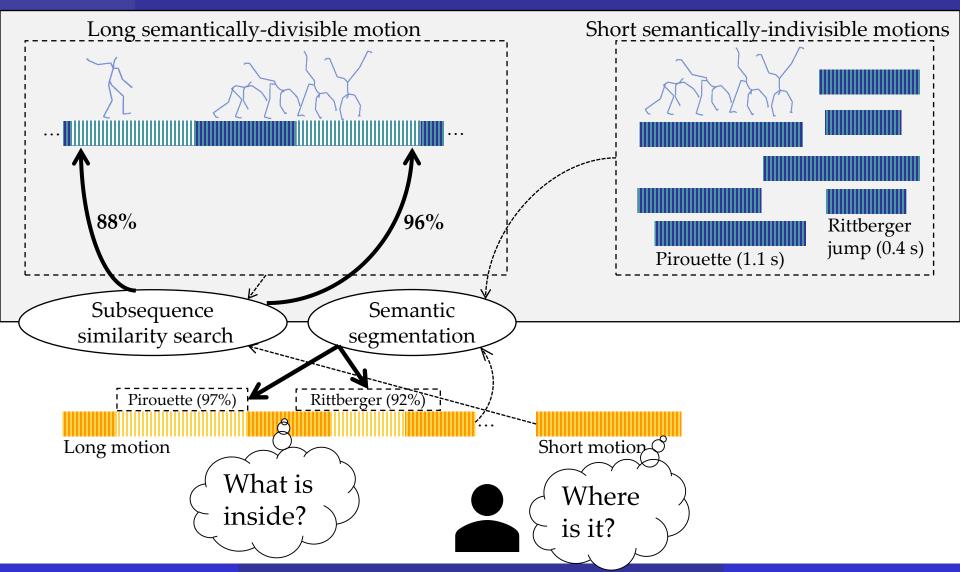
### Long motions

- Semantically-**divisible** motions ~ sequence of actions
- Length in order of minutes, hours, days, or even unlimited
- Database typically a single long motion either preprocessed as a whole, or evaluated in the stream-based nature



## 6.1 Processing Long Motions





## 6.1 Processing Long Motions

### Operations

- Subsequence similarity search
- Semantic segmentation
  - Offline sequence annotation
  - Real-time event detection
- Other operations:
  - Mining frequent movement patterns
  - Prediction of actions

ACM

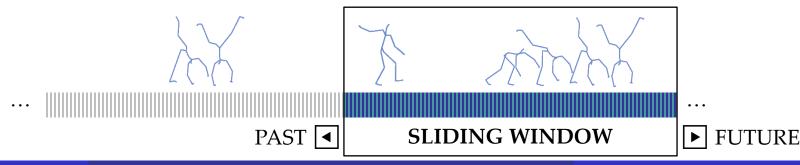
 $\mathbf{M}\mathbf{N}$ 

## 6.1 Processing Long Motions



## Long-motion processing

- File-based processing:
  - The long motion is known in advance and can be stored and preprocessed offline as a whole
  - E.g., offline sequence annotation
- Stream-based processing:
  - A limited part of the long motion is accessible at a given time
  - E.g., real-time event detection in data from surveillance cameras



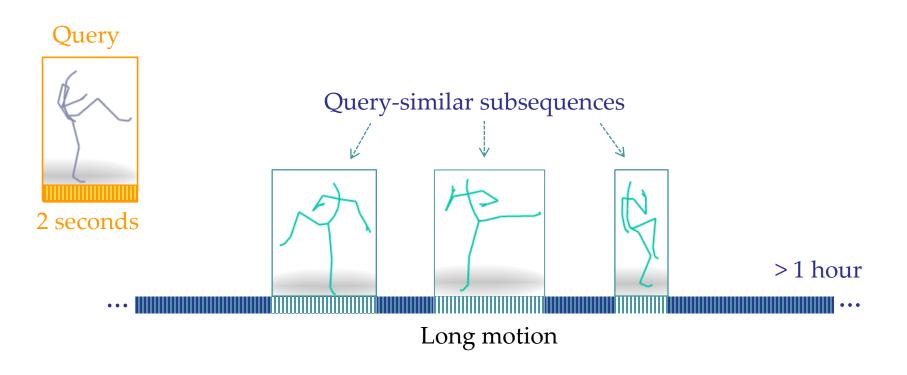
122/159

## 6.2 Subsequence Search



#### Subsequence search

• An efficient mechanism for searching a long motion and localizing its parts that are similar to a short query sequence



## 6.2 Search Challenges



#### Problems

- Query can be potentially any motion sequence, usually limited in its length
  - E.g., semantic action such as kick or jump, its part or a transition in between any of these, but also any non-categorized motion
- Query-similar subsequences can potentially occur anywhere in a long sequence
- Length of query-similar subsequences needn't be exactly the same with respect to the query motion

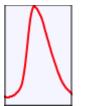
#### => efficient subsequence matching algorithm



#### Subsequence matching in time series

- Motion data can be perceived as a set of synchronized time series ~ a single multi-dimensional time series
  - E.g., a single time series for each joint and axis (*x*/*y*/*z*)
     => 31 joints · 3 = 93 time series
- Subsequence matching in time series data is a well-known problem for 1-dimensional time series

[Esling et al.: Time-series data mining. ACM Computing Surveys, 2012.] [Rakthanmanon et al.: Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping. KDD 2012]







#### Subsequence matching in time series

• Subsequence matching in time series data also applied to multi-dimensional time series

[Hu et al.: Time Series Classification under More Realistic Assumptions. ICDM, 2013.] [Gong et al.: Fast Similarity Search of Multi-Dimensional Time Series via Segment Rotation. DASFAA, 2015.]

<sup>7</sup>There is a need for an effective distance function

- Efficient algorithms are based on distance functions that compare frame-based features
- Traditional time-series algorithms hardly applicable to motion-data domain due to the absence of distance functions working **effectively** on **frame-based features**

October 22, 2018

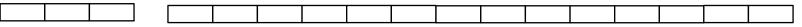


#### Subsequence matching in motion data

- Effective motion-based features are extracted from short motions => segmentation
- Partitioning the query and long motion sequence into parts

   segments to be meaningfully comparable

QueryLong data sequence



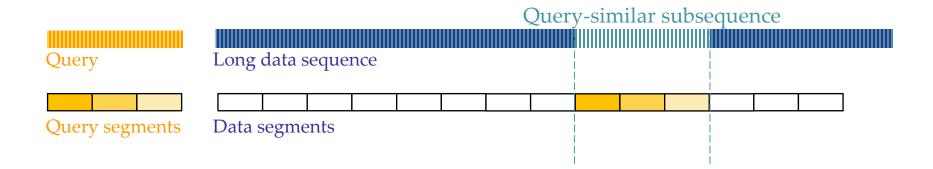
- Types of segmentation:
  - Overlapping/disjoint segments
  - Segments of a fixed/variable length
  - Unsupervised/supervised (semantic) segmentation



128/159

#### Subsequence matching in motion data

- Subsequence search = segmentation + retrieval algorithm
- Retrieval algorithm searching for consecutive data segments that are similar to consecutive query segments



## 6.2 Alignment Problem

Long data sequence



#### Alignment problem in subsequence matching

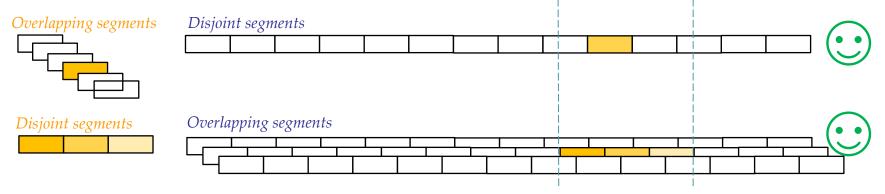
⇒Detecting only "*selected*" segments => alignment problem

Query segments

Query

#### ⇒Solving the alignment problem by overlapping segments

– Considering every possible segment is extremely expensive



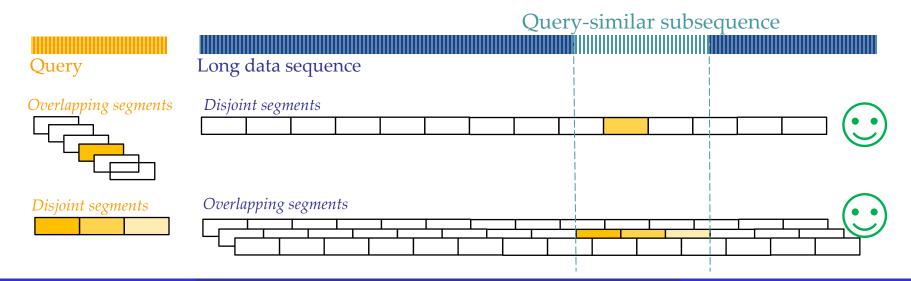
Query-similar subsequence

## 6.2 Overlapping Segmentation



#### Partitioning both the query and data sequence

- ③ Overlapping segments solve the alignment problem
- Events of the second sec
- 😕 Grouping relevant segments w.r.t. temporal information

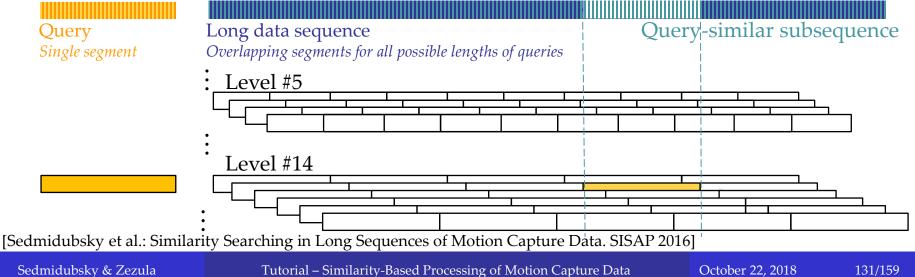


# 6.2 Overlapping Data Segmentation & Query as a Single Segment



#### Partitioning only the data sequence

- Solving the alignment problem by:
  - Considering a query as a single segment
  - Organizing overlapping data segments in multiple levels for different segment lengths
- ③ Much easier retrieval one query, no complex post-processing
- Segment level for each query length a big number of data segments

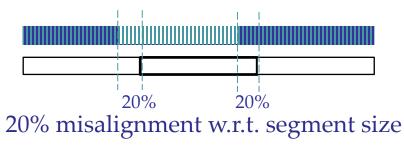


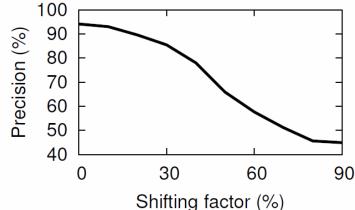
## 6.2 Elasticity Property



#### Reducing the number of levels and segments

- Motion-image similarity concept exhibits elasticity property
  - Search accuracy decreases only slightly when up to 20% of segment content is misaligned (i.e., shifted)





Overlapping segments can be shifted by 5–25 % of their length (and not only by a single frame) Levels can be generated only for the specific lengths of queries (and not for all the possible ones)

The big number of segments can be dramatically reduced

Sedmidubsky & Zezula

October 22, 2018

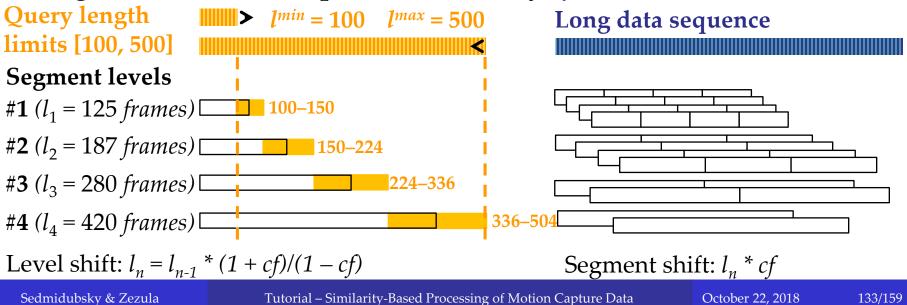
132/159

## 6.2 Decreasing Number of Segments



## **Reducing the number of levels and segments**

- Segment lengths and number of levels depend on
  - Query length limits (*l<sup>min</sup>*, *l<sup>max</sup>*)
  - Elasticity of the similarity measure (quantified by  $cf \in [0, 1]$ )
- Segmentation example for elasticity  $cf = 0.2 \sim 20\%$ :

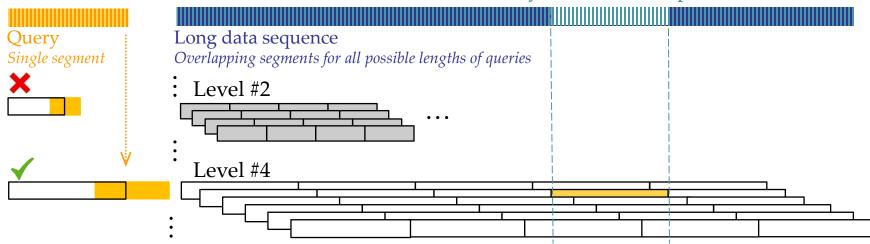


## 6.2 Query Evaluation



#### Searching within a multi-level segmentation

- Only a single query-relevant level considered for search
  - For arbitrary data subsequence of  $l^{min}$  < length <  $l^{max}$ , there exists a single segment that overlaps for at most  $100 \cdot (1 cf)$  [%]
- The *k* most similar segments presented as the query result



#### Query-similar subsequence

Sedmidubsky & Zezula

October 22, 2018

134/159

## 6.2 Query Evaluation Costs



135/159

#### Example:

- Data sequence of length 400,000 frames (120 Hz ~ 1 hour)
- Query length limits:  $l^{min} = 100$  and  $l^{max} = 500$  frames
- Example query length: 300 frames (120 Hz ~ 3 seconds)

|                                  | Total # of data<br>segments | Data<br>replication | Max # of<br>comparisons |
|----------------------------------|-----------------------------|---------------------|-------------------------|
| Baseline – overlap on query      | 4,000                       | 1                   | 800,000                 |
| Baseline – overlap on data       | 400,000                     | 100                 | 1,200,000               |
| Multi-level segmentation – naïve | 160,000,000                 | 120,000             | 400,000                 |
| Multi-level segmentation         | 7,720                       | 20                  | 1,430                   |

## 6.2 Dataset



#### HDM05 – long motions

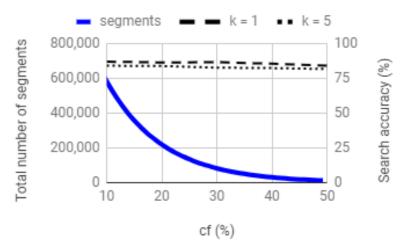
- 102 long sequences ~ 68 minutes in total
- Ground truth 1,464 short subsequences in 15 categories (~queries)
  - Shortest and longest samples: 41 frames (0.3s) and 2,063 frames (17.2s)
  - Action classes corresponding to exercising activities:
    - Cartwheel
    - Exercise
    - Jump
    - Kick
    - •

## 6.2 Experimental Evaluation



#### **Subsequence search evaluation**

- Subsequence retrieval using *k*NN queries:
  - 1,464 ground-truth subsequences used as query objects
  - Retrieved subsequence is relevant if it overlaps with some groundtruth subsequence of the same class
  - $l^{min} = 41$  frames (0.3s),  $l^{max} = 2,063$  frames (17.2s)
  - Different settings of elasticity *cf* = {10%, 20%, 30%, 40%, 50%}



| cf<br>[%] | # of<br>levels | Sequential<br>scan [ms] |
|-----------|----------------|-------------------------|
| 10        | 18             | 447                     |
| 20        | 9              | 205                     |
| 30        | 6              | 126                     |
| 40        | 5              | 88                      |
| 50        | 4              | 66                      |

137/159

## 6.2 Subsequence Search Summary

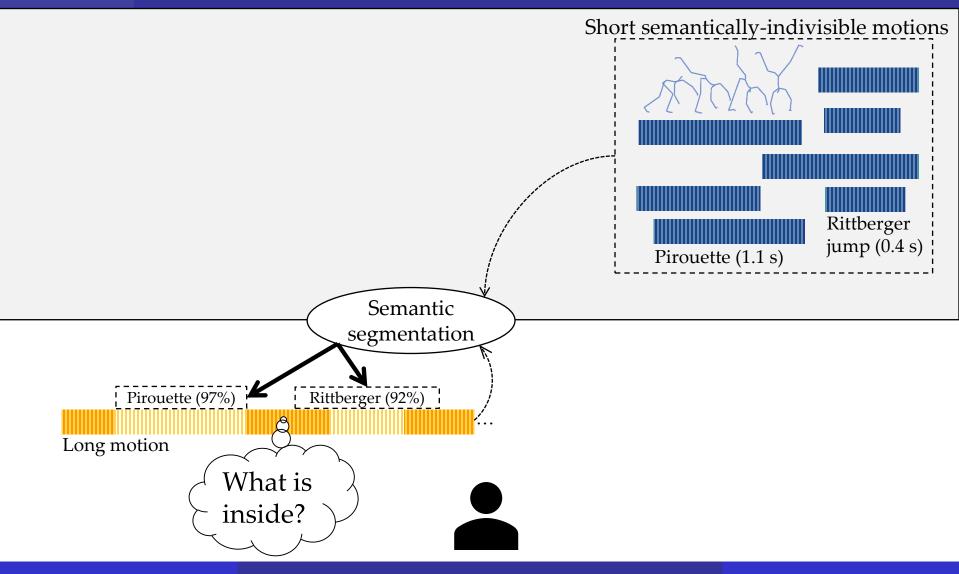


#### Summary

- Advanced subsequence matching in mocap data:
  - Query always considered as a single segment
  - The elasticity property of the motion-image similarity concept dramatically reduces the number of data segments
- Efficiency:
  - Searching the 68-minute sequence sequentially takes 205ms
  - Search times can further be decreased by roughly two orders of magnitude by indexing data segments at each level
    - Approximate search within a 121-day long data sequence in 1 second
- Demo: <u>http://disa.fi.muni.cz/mocap-demo-classification/</u>

## 6.3 Semantic Segmentation





## 6.3 Semantic Segmentation



#### Semantic segmentation

- An efficient mechanism for discovering actions within a long motion, based on a user-provided categorization
- Processing:
  - File-based processing ~ offline sequence annotation
  - Stream-based processing ~ online event detection



User-provided instances of the KICK class

Long motion

## 6.3 Semantic Segmentation



#### Challenges

- Beginnings and endings of actions are unknown
  - A more difficult problem than action classification
- In case of stream-based processing, only a small part of data is accessible and has to be processed in real time

## Approaches

• Segment-based event detection

[Elias et al.: A Real-Time Annotation of Motion Data Streams, ISM 2017]

- Frame-based semantic segmentation using a LSTM network
  - Offline-LSTM offline sequence annotation
  - Online-LSTM online event detection

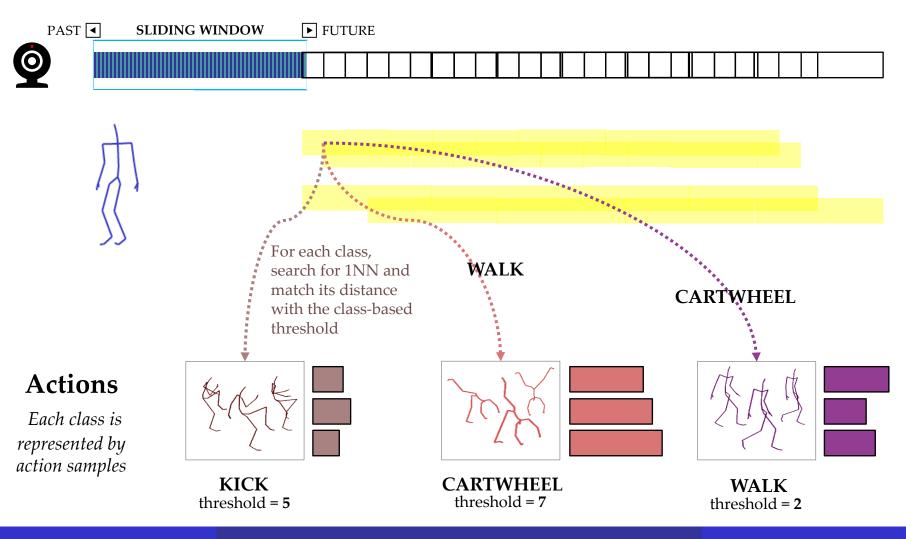
## 6.3 Segment-Based Event Detection



## **Segment-based matching**

- Multi-level segmentation structure as in subsequence search
   Segments detected in stream-based nature
- Each segment is matched against each action in each class
  - Matching based on motion-image similarity concept
  - If similarity between the segment and action is under a class-based threshold, the segment is assigned the action class
  - All the assigned segments are merged to obtain the overall semantic segmentation

## 6.3 Segment-Based Event Detection



Tutorial – Similarity-Based Processing of Motion Capture Data

ACM

 $\mathbf{M}\mathbf{M}$ 

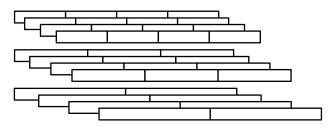
2018

## 6.3 Segment-Based Event Detection



## Segmentation

- Multi-level segmentation structure as in subsequence search
  - Versatility the density of the segments is controlled by a userspecified parameter *cf*
  - The parameter denotes the number of levels and the size of shift (overlap) between consecutive segments



#### **Dense segmentation**

Produces more segments resulting in a more precise annotation but requires more processing power.



**Sparse segmentation** *Produces less segments but requires a more elastic similarity measure.* 

#### • Segmentation density impacts efficiency and effectiveness

Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

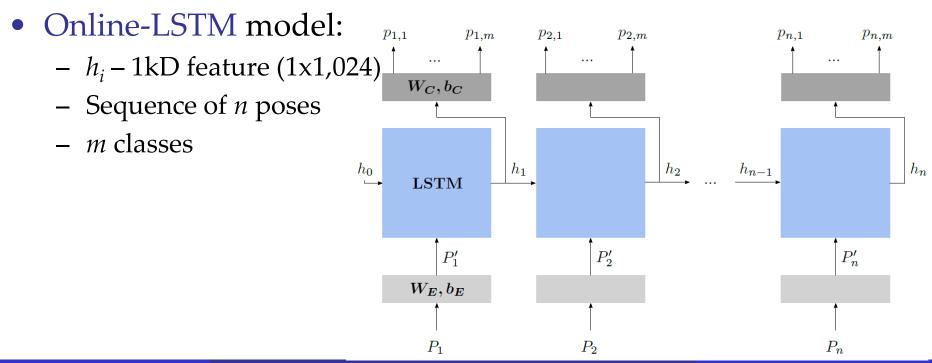
October 22, 2018

## 6.3 Frame-Based Semantic Segmentation



## LSTM-based semantic segmentation

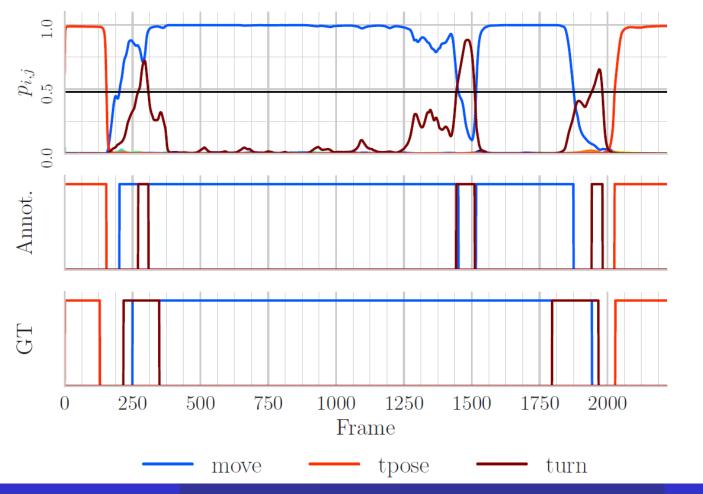
- Learning a class assignment for each frame on training data
  - Sequences with their annotated parts are provided in advance
  - No similarity concept needed



## 6.3 Frame-Based Semantic Segmentation



#### **Output of Online-LSTM**



Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

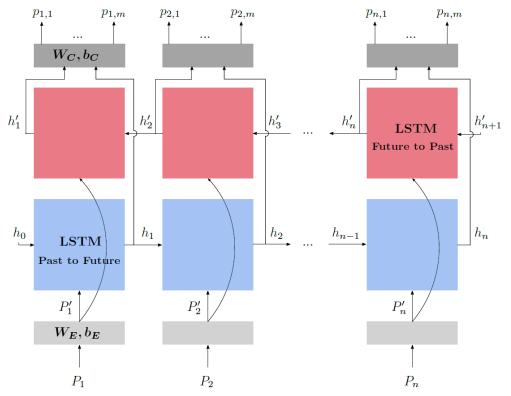
October 22, 2018

# 6.3 Frame-Based Semantic Segmentation



# **Offline-LSTM model**

- A bidirectional LSTM architecture to enhance the estimation of beginnings and endings of actions
- 1kD feature (2x512)
  - $h'_i$  512D feature
  - $h_i$  512D feature



# 6.3 Dataset



## HDM05 – long motions

- 102 long sequences ~ 68 minutes in total
- Ground truth 1,464 short subsequences in 15 categories
  - Shortest and longest samples: 41 frames (0.3s) and 2,063 frames (17.2s)
  - Action classes corresponding to exercising activities:
    - Cartwheel
    - Exercise
    - Jump
    - Kick
- Event detection scenario:
  - Actions in sequences of 17 mins used as representatives of classes
  - Sequences of 51mins used for online event detection

# 6.3 Comparison of Methods



#### Accuracy measure

- $F_1$  score a harmonic mean of recall and precision measured on the level of individual frames  $F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$ 
  - Precision the ratio of correctly annotated frames and all the algorithm-annotated frames
  - Recall the ratio of correctly annotated frames and all the groundtruth annotated frames

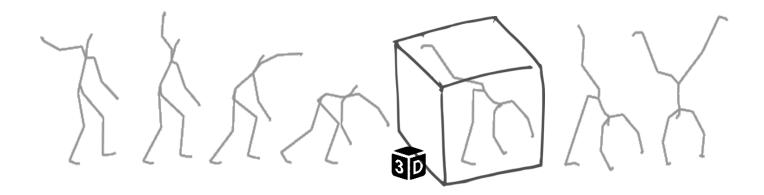
|                           | Training<br>data | Test<br>data | Training<br>time | Per-frame efficiency |        |        | F <sub>1</sub> |
|---------------------------|------------------|--------------|------------------|----------------------|--------|--------|----------------|
|                           |                  |              |                  | Extr.                | Annot. | Total  | accuracy       |
| Muller et al. (2009)      | 24 min           | 60 min       | N/A              | 1.9 ms               | 2.3 ms | 4.2 ms | 61.00 %        |
| Muller + keyframes (2009) | 24 min           | 60 min       | N/A              | 1.9 ms               | 0.2 ms | 2.1 ms | 75.00 %        |
| Segment-based ann. (2017) | 17 min           | 51 min       | 2 h              | 7.1 ms               | 0.5 ms | 7.6 ms | 68.65 %        |
| Online-LSTM (2018)        | 17 min           | 51 min       | 5 h              | -                    | 0.1 ms | 0.1 ms | 74.95 %        |
| Offline-LSTM (2018)       | 17 min           | 51 min       | 3.5 h            | -                    | 0.1 ms | 0.1 ms | 78.78 %        |

Sedmidubsky & Zezula

Tutorial - Similarity-Based Processing of Motion Capture Data







Sedmidubsky & Zezula

Tutorial – Similarity-Based Processing of Motion Capture Data

October 22, 2018

# 7 Conclusions



# **Tutorial objectives**:

- To present challenges and existing principles for computerized processing of mocap capture data
  - Presented operations similarity comparison, subsequence search, classification, semantic segmentation
- To focus not only on effectiveness but also on efficiency and exploit similarity search
- To apply modern machine-learning principles to automatically learn content-preserving movement features
- Presented approaches possibly applicable:
  - To any application field that processes motion data, e.g., medicine
  - To any spatio-temporal data ~ ground-reaction force (GRF) data

# 7 Demos

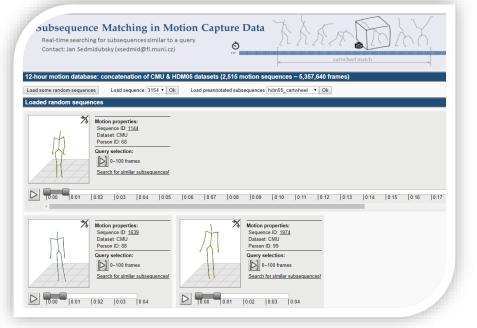


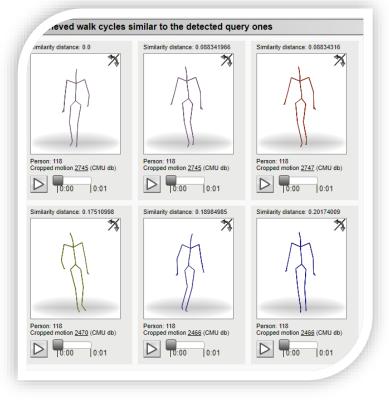
#### **Classification/Subsequence search demo**

• http://disa.fi.muni.cz/mocap-demo-classification/

### Gait similarity search demo







152/159



### **Similarity Measures & Motion Features**

- [Mathieu Barnachon, Saïda Bouakaz, Boubakeur Boufama, and Erwan Guillou. Ongoing human action recognition with motion capture. Pattern Recognition, 2014.]
- [Yong Du, Wei Wang, and Liang Wang. Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition. CVPR, 2015.]
- [Georgios Evangelidis, Gurkirt Singh, and Radu Horaud. Skeletal Quads: Human Action Recognition Using Joint Quadruples. ICPR, 2014.]
- [Harshad Kadu and C.-C. Jay Kuo. Automatic Human Mocap Data Classification. IEEE Transactions on Multimedia, 2014.]
- [Meinard Müller, Andreas Baak, and Hans-Peter Seidel. Efficient and Robust Annotation of Motion Capture Data. SCA, 2009.]
- [Jan Sedmidubsky, Petr Elias, and Pavel Zezula. Effective and Efficient Similarity Searching in Motion Capture Data. Multimedia Tools and Applications, 2018.]
- [Jan Sedmidubsky, Petr Elias, and Pavel Zezula. Enhancing Effectiveness of Descriptors for Searching and Recognition in Motion Capture Data, ISM 2017.]
- [Jan Sedmidubsky and Pavel Zezula. Probabilistic Classification of Skeleton Sequences. DEXA, 2018.]
- [Roshan Singh, Jagwinder Kaur Dhillon, Alok Kumar Singh Kushwaha, and Rajeev Srivastava. Depth based enlarged temporal dimension of 3D deep convolutional network for activity recognition. Multimedia Tools and Applications, 2018.]
- [Bin Sun, Dehui Kong, Shaofan Wang, Lichun Wang, Yuping Wang, and Baocai Yin. Effective human action recognition using global and local offsets of skeleton joints. Multimedia Tools and Applications, 2018.]
- [Chang Tang, Wanqing Li, Pichao Wang, and Lizhe Wang. Online human action recognition based on incremental learning of weighted covariance descriptors. Information Sciences, 2018.]
- [Yingying Wang and Michael Neff. Deep signatures for indexing and retrieval in large motion databases. Motion in Games, 2015.]





#### **Similarity Measures & Motion Features**

- [D. Wu and L. Shao. Leveraging Hierarchical Parametric Networks for Skeletal Joints Based Action Segmentation and Recognition. CVPR, 2014.]
- [Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity Search: The Metric Space Approach. Advances in Database Systems, Vol. 32., Springer-Verlag. 220 pages.]
- [Huseyin Coskun, David Joseph Tan, Sailesh Conjeti, Nassir Navab, and Federico Tombari. Human Motion Analysis with Deep Metric Learning. ECCV, 2018.]



# **Similarity Searching**

- [Zhigang Deng, Qin Gu, and Qing Li. Perceptually Consistent Examplebased Human Motion Retrieval. I3D, 2009.]
- [Y. Fang, K. Sugano, K. Oku, H. H. Huang, and K. Kawagoe. Searching human actions based on a multi-dimensional time series similarity calculation method. ICIS, 2015.]
- [Mubbasir Kapadia, I-kao Chiang, Tiju Thomas, Norman I Badler, and Joseph T Kider Jr. Efficient Motion Retrieval in Large Motion Databases. I3D, 2013.]
- [Björn Krüger, Anna Vögele, Tobias Willig, Angela Yao, Reinhard Klein, and Andreas Weber. Efficient Unsupervised Temporal Segmentation of Motion Data. IEEE Transactions on Multimedia, 2017.]
- [Jan Sedmidubsky, Petr Elias, and Pavel Zezula. Effective and Efficient Similarity Searching in Motion Capture Data. Multimedia Tools and Applications, 2018.]
- [Jan Sedmidubsky, Petr Elias, and Pavel Zezula. Searching for variable-speed motions in long sequences of motion capture data. Information Systems, 2018.]
- [Jan Sedmidubsky, Jakub Valcik, and Pavel Zezula. A Key-Pose Similarity Algorithm for Motion Data Retrieval. ACIVS, 2013.]
- [Jan Sedmidubsky, Pavel Zezula, and Jan Svec. Fast Subsequence Matching in Motion Capture Data. ADBIS, 2017.]
- [Pavel Zezula. Similarity Searching for the Big Data. Mob. Netw. Appl., 2015.]
- [Pavel Zezula. Similarity Searching for Database Applications. ADBIS, 2016.]
- [Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity Search: The Metric Space Approach. Advances in Database Systems, Vol. 32., Springer-Verlag. 220 pages.]



# Classification

- [Fabien Baradel, Christian Wolf, and Julien Mille. Human Action Recognition: Pose-based Attention draws focus to Hands. ICCV Workshop on Hands in Action, 2017.]
- [Mathieu Barnachon, Saïda Bouakaz, Boubakeur Boufama, and Erwan Guillou. Ongoing human action recognition with motion capture. Pattern Recognition, 2014.]
- [Judith Butepage, Michael J. Black, Danica Kragic, and Hedvig Kjellstrom. Deep Representation Learning for Human Motion Prediction and Classification. CVPR, 2017.]
- [Yong Du, Wei Wang, and Liang Wang. Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition. CVPR, 2015.]
- [Georgios Evangelidis, Gurkirt Singh, and Radu Horaud. Skeletal Quads: Human Action Recognition Using Joint Quadruples. ICPR, 2014.]
- [Harshad Kadu and C.-C. Jay Kuo. Automatic Human Mocap Data Classification. IEEE Transactions on Multimedia, 2014.]
- [Sohaib Laraba, Mohammed Brahimi, Joelle Tilmanne, and Thierry Dutoit. 3D skeleton-based action recognition by representing motion capture sequences as 2D-RGB images. Computer Animation and Virtual Worlds, 2017.]
- [Chaolong Li, Zhen Cui, Wenming Zheng, Chunyan Xu, and Jian Yang. Spatio-Temporal Graph Convolution for Skeleton Based Action Recognition. AAAI, 2018.]
- [Jun Liu, Amir Shahroudy, Dong Xu, and GangWang. Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition. ECCV, 2016.]
- [Jun Liu, Gang Wang, Ling-Yu Duan, Ping Hu, and Alex C. Kot. Skeleton Based Human Action Recognition with Global Context-Aware Attention LSTM Networks. IEEE Transactions on Image Processing, 2018.]
- [Juan C. Nunez, Raul Cabido, Juan J. Pantrigo, Antonio S. Montemayor, and Jose F. Velez. Convolutional Neural Networks and Long Short-Term Memory for skeleton-based human activity and hand gesture recognition. Pattern Recognition, 2018.]



# Classification

- [Jan Sedmidubsky and Pavel Zezula. Probabilistic Classification of Skeleton Sequences. DEXA, 2018.]
- [Roshan Singh, Jagwinder Kaur Dhillon, Alok Kumar Singh Kushwaha, and Rajeev Srivastava. Depth based enlarged temporal dimension of 3D deep convolutional network for activity recognition. Multimedia Tools and Applications, 2018.]
- [Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying Liu. An End-to-End Spatio-Temporal Attention Model for Human Action Recognition from Skeleton Data. CoRR abs/1611.06067, 2016.]
- [Bin Sun, Dehui Kong, Shaofan Wang, Lichun Wang, Yuping Wang, and Baocai Yin. Effective human action recognition using global and local offsets of skeleton joints. Multimedia Tools and Applications, 2018.]
- [Wentao Zhu, Cuiling Lan, Junliang Xing, Wenjun Zeng, Yanghao Li, Li Shen, and Xiaohui Xie. Co-occurrence Feature Learning for Skeleton Based Action Recognition Using Regularized Deep LSTM Networks. AAAI, 2016.]
- [Pattreeya Tanisaro and Gunther Heidemann. An Empirical Study on Bidirectional Recurrent Neural Networks for Human Motion Recognition. TIME, 2018.]



# **Semantic Segmentation**

- [Said Yacine Boulahia, Eric Anquetil, Franck Multon, and Richard Kulpa. CuDi3D: Curvilinear displacement based approach for online 3D action detection. Computer Vision and Image Understanding, 2018.]
- [Judith Butepage, Michael J. Black, Danica Kragic, and Hedvig Kjellstrom. Deep Representation Learning for Human Motion Prediction and Classification. CVPR, 2017.]
- [Petr Elias, Jan Sedmidubsky, and Pavel Zezula. A Real-Time Annotation of Motion Data Streams. ISM, 2017.]
- [Sheng Li, Kang Li, and Yun Fu. Early Recognition of 3D Human Actions. ACM Trans. Multimedia Comput. Commun. Appl., 2018.]
- [Shugao Ma, Leonid Sigal, and Stan Sclaroff. Learning Activity Progression in LSTMs for Activity Detection and Early Detection. CVPR, 2016.]
- [Meinard Müller, Andreas Baak, and Hans-Peter Seidel. Efficient and Robust Annotation of Motion Capture Data. SCA, 2009.]
- [Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying Liu. Spatio-Temporal Attention-Based LSTM Networks for 3D Action Recognition and Detection. IEEE Transactions on Image Processing, 2018.]
- [Chang Tang, Wanqing Li, Pichao Wang, and Lizhe Wang. Online human action recognition based on incremental learning of weighted covariance descriptors. Information Sciences, 2018.]
- [D. Wu and L. Shao. Leveraging Hierarchical Parametric Networks for Skeletal Joints Based Action Segmentation and Recognition. CVPR, 2014.]
- [Yan Xu, Zhengyang Shen, Xin Zhang, Yifan Gao, Shujian Deng, YipeiWang, Yubo Fan, and EricI-Chao Chang. Learning multi-level features for sensor-based human action recognition. Pervasive and Mobile Computing, 2017.]
- [Xin Zhao, Xue Li, Chaoyi Pang, Quan Z. Sheng, Sen Wang, and Mao Ye. Structured Streaming Skeleton A New Feature for Online Human Gesture Recognition. ACM Trans. Multimedia Comput. Commun. Appl., 2014.]



159/159

### Presentations

• [Lukas Masuch: Deep Learning – The Past, Present and Future of Artificial Intelligence, 2015]

# Funding

 Supported by ERDF "CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence" (No. CZ.02.1.01/0.0/0.0/16\_019/0000822)