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ABSTRACT

Microtubule-associated protein 2¢ (MAP2c)1 is
a 49-kDa intrinsically disordered protein regulating
the dynamics of microtubules in developing neu-
rons. MAP2c differs from its sequence homologue
Tau in the pattern and kinetics of phosphorylation
by cAMP-dependent protein kinase (PKA). More-
over, the mechanisms through which MAP2c inter-
acts with its binding partners and the conformational
changes and dynamics associated with these inter-
actions remain unclear. Here, we used NMR re-
laxation and paramagnetic relaxation enhancement
techniques to determine the dynamics and long-
range interactions within MAP2c. The relaxation
rates revealed large differences in flexibility of in-
dividual regions of MAP2c, with the lowest flexi-
bility observed in the known and proposed binding
sites. Quantitative conformational analyses of chem-
ical shifts, small angle X-ray scattering (SAXS),
and paramagnetic relaxation enhancement measure-
ments disclosed that MAP2c regions interacting with

important protein partners, including Fyn tyrosine
kinase, plectin, and PKA, adopt specific confor-
mations. High populations of poly-proline II and
a-helices were found in Fyn- and plectin-binding
sites of MAP2c, respectively. The region binding
regulatory subunit of PKA consists of two helical
motifs bridged by a more extended conformation.
Of note, although MAP2c and Tau did not differ
substantially in their conformations in regions of
high sequence identity, we found that they differ sig-
nificantly in long-range interactions, dynamics, and
local conformation motifs in their N-terminal do-
mains. These results highlight that the N-terminal
regions of MAP2c provide important specificity to
its regulatory roles and indicate a close relationship
between MAP2c’s biological functions and confor-
mational behavior.

Cytoskeletal microtubule associated pro-
teins (MAPs) bind, stabilize, and regulate dynam-



ics of microtubules, in a phosphorylation-dependant
manner. MAP2 and Tau are neuronal MAPs, MAP2
being expressed mainly in dendrites, whereas Tau
is found in axons (1). Both MAP2 and Tau are
expressed as different spliced variants. Tau iso-
forms expressed in human brain differ in the num-
ber of near-amino terminal inserts as well as in the
number of repeats in the Microtubule Binding Do-
main (MTBD), whereas MAP2 isoforms differ in the
length of the N-terminal projection domain (2, 3).
Expression of both MAP2 and Tau isoforms is reg-
ulated during development. The high-molecular
weight isoforms, MAP2a and MAP2b, contain 1830
amino-acids, and the two low molecular weight vari-
ants, MAP2c¢ and MAP2d, consist of 467 and 498
amino acids, respectively. MAP2c is the smallest
functional isoform, expressed mainly during embry-
onal brain development. After birth, its expression
is restricted to regions exhibiting post-natal plastic-
ity, such as the olfactory bulb (4), suggesting a role
in neuronal development.

Tau and MAP2c share a high sequence ho-
mology in the C-terminal part, containing MTBD,
but differ in the N-terminal part, comprising the
acidic and the proline-rich subdomains (Fig. 1) (5).
The sequence diversity is further magnified by dif-
ferent phosphorylation patterns (6—13).

Tau, but not MAP2c, forms paired helical
filaments (PHFs) observed in brains of patients suf-
fering from the Alzheimer’s disease. The major
difference in the aggregation properties seems to
be encoded in few amino-acids of the aggregation
seed motifs in the otherwise highly homologous C-
terminal domains of Tau and MAP2c (14). In ad-
dition, interactions between the MTBD and the N-
terminal domain of Tau are present in PHFs (15).

Identification of structural motifs responsi-
ble for specific functions of MAP2c and Tau is com-
plicated by the fact that MAP2c and Tau belong to the
class of intrinsically disordered proteins (IDPs) lack-
ing a unique structure and exist in multiple, quickly
interconverting conformations (16-20). NMR has
proved to be a reliable tool to study their dynamics
and structural features (11, 13, 21-25). Despite their
highly flexible nature, Tau (23) and MAP2c (25)
adopt transient secondary structures, documenting
that the structures of Tau and MAP2c are far from a
random coil. Also, long-range intramolecular con-
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tacts have been observed in Tau (15), supporting the
"paper-clip" model of the Tau molecule.

Direct studies of structure-function relations
rely on the availability of atomistic structural mod-
els. Quantitative computational analysis of experi-
mental data reflecting the local conformations and
long-range contacts provided an atomic-resolution
ensemble model describing molecular properties of
Tau (26). In this paper, we built a similar model
for MAP2c and investigated molecular motions of
MAP2c using NMR relaxation. The results allowed
us to correlate structural features and dynamics of
MAP2c with its known and proposed binding sites.
In particular, we addressed questions related to in-
teractions of MAP2c with three important binding
partners. The first of them was the Src-homology
domain 3 (SH3 domain) of the Fyn tyrosine ki-
nase, recognizing different motifs of MAP2c and
Tau (27, 28). It was not clear if the conforma-
tion optimal for the SH3 binding is highly popu-
lated already in the free form of intrinsically disor-
dered MAP2c or if it is formed only in the bound
state. The second examined interaction partner was
plectin. Its non-canonical SH3 domain (29) was re-
ported to bind MAP2c but the recognized motif was
unknown (30). The third inspected interaction re-
gion was the site recognized by the RII regulatory
subunit of cAMP-dependent protein kinase (PKA).
This site was expected to adopt a-helical conforma-
tion, but populations of @-helix in MAP2c fragments
covering the corresponding sequence were low (31).

RESULTS

Overall shape from small angle X-ray scat-
tering — Sampling of the volume space by MAP2c
was probed by small angle X-ray scattering (SAXS).
The scattering curves were acquired for various
concentrations of unphosphorylated MAP2c¢ and
of MAP2c phosphorylated by PKA. A concentra-
tion dependence of the scattering intensity at low
angles (corresponding to the momentum transfer
g < 0.5nm™") was observed at concentrations of
unphosphorylated MAP2c exceeding 0.1 mM (Fig.
2a). The concentration effects were greatly reduced
when MAP2c was phosphorylated by PKA (Fig.
2b). This finding indicates that intermolecular inter-
actions existing at sub-millimolar concentrations of
MAP2c are suppressed by the PKA phosphorylation.



The scattering data were further analyzed quantita-
tively using the ASTEROIDS approach (vide infra).

Paramagnetic relaxation enhancement—
Long-range interactions of MAP2c were moni-
tored using paramagnetic relaxation enhancement
(PRE) of NMR signals (32). The native MAP2c
contains a single cysteine at position C348, lo-
cated in MTBD, providing a convenient site for
attachment of the paramagnetic nitroxide radi-
cal label (1-oxyl-2,2,5,5-tetramethyl-A3-pyrroline-
3-methyl)-methanethiosulfonate (MTSL). Six mu-
tants, with Cys 348 replaced by serine and with
a single cysteine located in the N-terminal acidic
domain (E52C, Q110C), the proline-rich domain
(T153C, E203C, K282C) and in the C-terminal
domain (L402C), were designed and labeled with
MTSL.

In order to achieve high resolution, the peak
intensities were monitored in 3D non-uniformly
sampled HNCO spectra. Considering lower sen-
sitivity of the HNCO experiment compared to the
2D 'H-'N HSQC spectra, we tested whether the
lower tendency of MAP2c to aggregate allows us
to work at higher concentrations than used in the
PRE studies of Tau (23, 24). PRE observed for
70 uM unphosphorylated, 70 uM phosphorylated,
and 0.3 mM phosphorylated wild-type MAP2c were
comparable. In contrast, a strong concentration de-
pendence of PRE was observed for 0.3 mM unphos-
phorylated wild-type MAP2c, in agreement with the
SAXS data indicating possible intermolecular inter-
actions at high concentrations of unphosphorylated
MAP2c (Fig. 2c). Therefore, only data obtained at
the 70 uM concentration were used for the quantita-
tive conformational analysis (vide infra) in the case
of unphosphorylated MAP2c. At this concentration,
the sensitivity of the NMR experiment is still accept-
able and the concentration dependence of the SAXS
curves is already weak.

The obtained PRE profiles (Fig. 3d) re-
vealed the following interactions. Within the N-
terminal domain, intramolecular interactions were
observed between the vicinity of Glu 52 (in the
negatively charged stretch of glutamates S>EEEE™?),
and residues in the vicinity of Trp 14 and Val
95. In the C-terminal domain, weak intramolecu-
lar interactions were noticed between microtubule
binding repeats and proline-rich regions.  Fi-
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nally, long-range contacts were observed between
the C-terminal domain and the N-terminal domain
(namely vicinity of Trp 14, of Glu 52, and of Val
95), with a strong contribution of intermolecular
(concentration-dependent) interactions. The long-
range interactions are in agreement with previous
observations of bent conformations and antiparallel
dimers of MAP2c molecules (33).

Conformational analysis — In order to con-
vert the obtained experimental data into a struc-
tural model, conformational analysis was performed
using the ASTEROIDS algorithm (34). Assigned
chemical shifts (13, 25), SAXS, and PRE data served
as an experimental input, reflecting local conforma-
tion, long-range contacts, and overall shape of the
molecule, respectively. Potential presence of dimers
(or higher oligomers) has a negligible effect on de-
scription of local conformational behavior but may
influence analysis of long-range interactions. In or-
der to minimize the effect of intermolecular inter-
actions, PRE and SAXS data measured at low con-
centrations were used in the case of unphosphory-
lated MAP2c. From a large set of 84,000 starting
structures generated by the flexible-meccano pro-
gram (see Experimental Procedures), a set of 600
structures was selected to reproduce the experimen-
tal data. In spite of the large conformational space of
the 467-residue polypeptide chain of MAP2c, good
agreement between the experimental data and values
calculated from the selected ensemble was achieved,
as documented in Fig. 3.

To validate the ensemble of the selected
MAP2c conformers, (i) values of N secondary
chemical shifts, A6(N), were removed from the se-
lection procedure and back-calculated form the se-
lected ensembles; and (ii) values of ' D(NH) residual
dipolar couplings (RDCs), measured as described in
Experimental Procedures but not used in the AS-
TEROID analysis, were calculated from the ensem-
bles selected based on chemical shift, PRE, and
SAXS data of MAP2c phosphorylated by PKA. In
both cases, the independent data were well repro-
duced by the selected ensembles (Table 1 and Fig.
3a,b). Similarly to the data published for htau40, y?
for the comparison of 259 experimental RDCs with
the selected ensembles was a factor of two lower
than y? for the comparison with the pool of statisti-
cal coil structures. The difference between y2 values



for the selected and statistical coil ensembles further
increased when the compared values were limited to
a subset of residues with a higher difference in local
sampling between selected ensemble and the statis-
tical coil pool (measured by the parameter Arama,
defined in Experimental Procedures). The differ-
ences in )(2 were even greater for A6(N), measured
with a high precision in this study. The validation
confirmed that the conformational description pro-
vided by ASTEROIDS is meaningful and predictive,
as reported for other proteins (26).

Local conformational propensities of
MAP2c derived from the distribution of the ¢ and
torsion angles, expressed as populations of three typ-
ical regions of the Ramachandran diagram in Fig. 4,
were in a general agreement with previously reported
(13, 25) secondary structure propensities calculated
using the SSP program (35). Similarly to SSP, AS-
TEROIDS derives the local conformations mostly
from chemical shifts. However, the ASTEROIDS
analysis of chemical shifts, based on the SPARTA
program (36), is more detailed. Of particular interest
is the population of the poly-proline II conformation,
that can be estimated on the basis of the currently
available experimental data (37). The propensities
to form particular secondary structures were often
identified for continuous sequences of residues, even
though the ensemble selection treats each amino acid
independently. To better visualize the continuous
segments of secondary structures, we also plotted
populations of short stretches of amino acids in the
same conformation (orange and red bars in Fig. 4).
Note that the important information is not the ab-
solute value of population of the continuous stretch
(which reflects composition of the starting pool of
structures with the statistical distribution of torsion
angles), but the relative increase of the population in
the selected ensemble.

Highly populated continuous stretches of
four and seven a-helical residues (corresponding to
one and two turns of an a-helix, respectively) were
identified in the C-terminal region (box r in Fig.
1). In addition, two regions were identified where a
complete a-helical turn was observed in more than
5 Y% structures of the selected ensembles and at least
five structures (0.8 %) with two turns were selected.
These regions correspond to the binding site of the
regulatory RII subunit of PKA (RII-site, Asp 83—
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Glu 113, box e in Fig. 1) (5, 31, 38) and the region
206SFSLNSSISSARR?!® (box e in Fig. 1). Most of
the extended regions (i.e., exhibiting negative SSP
score (35)) were found to highly populate the poly-
proline II region of the Ramachandran plot. This ap-
plies not only to the proline-rich sequences, but also
to a major portion of MTBD and residues between
Leu 402 and GIn 421. The highest population of
continuous stretches of residues in the poly-proline
II conformation was observed for a short proline-rich
segment encoded by Exon 7 (box g in Fig. 1), both
in the selected ensembles and in the statistical coil
pool. In addition, two regions were identified where
populations of four- and seven-residue stretches of
poly-proline II conformation exceed 30 % and 5 %,
respectively, in the selected ensemble only, whereas
the corresponding populations do not exceed 10 %
and 1% in the statistical coil pool, respectively.
These regions are the sequence '**PPSPPPSP'#! and
a binding site for the SH3 domain of the Fyn kinase
(box k in Fig. 1) (27). The differences between
secondary structures of unphosphorylated and phos-
phorylated MAP2c were very small.

We compared results of our conformational
analysis with secondary structure predictions pro-
vided by several publicly available software tools.
The predictors correctly identified position of the C-
terminal helix (box r in Fig. 1) and predicted the
extended conformation in MTBD, but provided in-
consistent results for the first 300 residues of MAP2c
(data not shown). This finding is not surprising,
considering that the predictors were developed for
well-structured proteins, and it documents that ex-
perimental data are currently essential for conforma-
tional analysis of IDPs.

Long-range intramolecular interactions in
the ensemble of structures selected by ASTEROIDS
are presented in Fig. 5 as a map of relative distances
between individual amino-acids. The map shows
that the average distances in the N-terminal region
(including vicinity of Trp 14, of Glu 52, and the re-
gion Asp 83—Glu 113) and between the N-terminal
region and MTBD are shorter in the selected ensem-
bles than in the statistical coil structures reflecting
only distribution of torsion angles typical for individ-
ual amino acids. As mentioned above, the analyzed
SAXS and PRE data were obtained at conditions
where formation of oligomeric species is greatly re-



duced but cannot be completely excluded. There-
fore, we do not interpret the ASTEROIDS distance
maps quantitatively in Discussion, but we take into
account also possible dimerization.

NMR relaxation analysis— Backbone dy-
namics of MAP2c were investigated by N spin
relaxation. In order to achieve sufficient resolu-
tion, relaxation rates were measured using '3C,!SN-
labeled MAP2c and non-uniformly sampled 3D re-
laxation experiments based on the HNCO correla-
tion (39). The R;, R, relaxation rates and steady-
state heteronuclear Overhauser enhancement were
measured at 600 MHz and 950 MHz spectrometers.
Since the R; rate is potentially influenced by chem-
ical and/or conformational exchange, and by the
presence of '3C (39), the R, experiment was com-
plemented by a less sensitive, but more accurate
measurement of the transverse cross-correlated re-
laxation rate I, (a result of interference between N
chemical shift anisotropy and 'H-'>N dipole-dipole
interaction (40)) at 950 MHz.

The relaxation rates obtained for unphop-
shorylated and PKA-phopshorylated MAP2c are
presented in Fig. 6. Since MAP2c is an IDP, the
measured relaxation rates represent average values
for ensembles of all conformational and oligomeric
states present at the given temperature. With an
exception of the region Asp 83-Glu 113, phospho-
rylation by PKA has a little effect on the measured
rates. It indicates that the obtained values reflect
mostly internal dynamics and not intermolecular in-
teractions. The more ordered (more rigid) regions
can be distinguished by higher values of the R, and
I', relaxation rates. Such regions include vicinity of
Trp 14, of Glu 52, residues Asp 83-Glu 113, ser-
ines in the proline-rich sequence '**PPSPPPSP!#!,
residues Arg 187-Gly 197, Glu 204-Arg 226, N-
terminal regions of microtubule binding repeats and
a homologous sequence following the microtubule
binding repeat 4 (MTBR4), vicinity of the major
phosphorylation site Ser 435, and the C-terminal
helix ®SEDVTAALAK*®*. The obtained relaxation
data are in a good agreement with outputs of some
disorder predictors (bottom panel in Fig. 6).

The measured relaxation rates were further
analyzed to obtain values of the spectral density
function J(w), which is a Fourier transform of the
time-correlation function (TCF) directly describing
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stochastic motions of the molecule (41-45). TCF
can be rather complex in the case of disordered
proteins, but can be approximated as a series of
weighted mono-exponential functions characterized
by correlation times. Various relaxation rates are
different linear combinations of values of the spec-
tral density function J(w), where the values of w
are given by the Larmor frequencies of the observed
nuclei ("H and 'SN). In this work, we calculated J(0)
from R;, I'y, and NOE measured at 950 MHz (46),
J(w) for 61 MHz and 515 MHz from R; and NOE
measured at 600 MHz, and J(w) for 96 MHz and
815MHz from R; and NOE measured at 950 MHz
(47, 48). Note that the obtained set of spectral den-
sity values is not affected by the aforementioned
inaccuracy of the measured R; rates.

A simple graphical analysis (Figs. 7 and
8) of the J(w) values calculated from the relax-
ation rates provides insight into dynamics of indi-
vidual residues (46, 49-51). Values clustered close
to the limits of a single mono-exponential TCF (gray
curves in Figs. 7 and 8 suggest dynamics dominated
by a single mode of motion, whereas deviations from
the curves indicate that more motional modes with
different correlation times contribute to the dynam-
ics.

Graphical analysis of the J(0) vs. J(w)
plots showed that J(w) values of residues in dif-
ferent known or proposed functional sites formed
well-defined clusters, indicating distinct types of
motions of the individual sites. Several examples
are presented in Figs. 7 and 8 and their posi-
tion in the MAP2c molecule is indicated in Fig.
1. J(0) values of residues of the C-terminal he-
lix ®SEDVTAALAK*%* (red cluster) and of MTBR3
(black cluster) range between 0.5 ns and 2 ns. Higher
J(0) values (up to 3 ns) were observed for residues
in the vicinity of Trp 14 and Glu 51 (blue cluster).
The highest local ordering was observed for residues
Asp 83—Glu 113 (green cluster), where the contribu-
tion of longer correlation time(s) is most significant
and where J(0) exceeds 4ns in unphosphorylated
MAP2c. The region in the vicinity of Ser 157 (gold
cluster) is an example of a flexible region with dy-
namics dominated by the short correlation time.

Interaction with plectin SH3 domain — Re-
gions of MAP2c responsible for interactions with
several proteins have been characterized in the past.



To extend the knowledge of binding sites, we exam-
ined interaction of MAP2c with a region of plectin
containg a non-canonical SH3 domain. Interactions
of disordered MAP2c with a well folded fragment
of plectin, consisting of spectrin repeats SR4, SRS
and of the SH3 domain (29), were monitored as
a decrease of MAP2c peak height in HNCO spec-
tra after addition of the SR4-SR5-SH3 plectin frag-
ment (Fig. 9). Peak heights were reduced in
several regions, most notably in MTBR3 and the
region 2SLNSSISSARR?!8. Canonical SH3 do-
mains are known to interact with PXXP motifs, pos-
itively charged regions (RXXK) motifs, and via ter-
tiary contacts involving hydrophobic residues (52).
Comparison of the peak height decrease with dis-
tribution of prolines, hydrophobic residues, charged
amino acids, and of secondary structure motifs (Fig.
9) shows that positively charged residues, but not the
PXXP motifs, are often found in the interaction sites.
Interestingly, the 2’8 SLNSSISSA?!® sequence con-
tains no prolines or positively charged amino acids,
but tends to form an amphiphilic helical structure.

DISCUSSION

Intrinsic  conformational behavior of
MAP2c is an important factor in a complex net-
work of intermolecular interactions controlling mi-
crotubule dynamics essential for neuron develop-
ment. Therefore, we examined how the observed
regions of distinctive conformations and dynamics
correlate with known and proposed functional mo-
tifs of MAP2c. We also compared the properties of
MAP2c with its close homologue Tau (clone htau40,
splicing variant 2N4R), exhibiting different expres-
sion and phosphorylation patterns, cellular local-
ization, and playing an important role in neurode-
generative processes associated with Alzheimer’s
disease. The determined populations of confor-
mations and dynamics did not differ substantially
between MAP2c and Tau in regions of high sequence
homology (boxes m—r in Fig. 1), including MTBD.
Therefore, we can conclude that structural basis of
interactions with microtubules and their competitors
(such as 14-3-3 proteins) is similar for MAP2c and
Tau. Results providing new insight into the binding
of MAP2c to its important interaction partners were
obtained for regions of lower sequence similarity
with Tau, and are discussed below.
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Site of interaction with canonical Fyn SH3
domain—Fyn is an important kinase containing an
SH3 domain and phosphorylationg single tyrosine
residues in different regions of the compared pro-
teins: Tyr 18 in Tau (12) and Tyr 67 in MAP2c
(53). In general, SH3 domains bind to proteins with
the sequential motif PXXP, preferably with posi-
tively charged amino acids in its vicinity. Tau and
MAP2c contain 7 and 13 PXXP motifs, respectively,
most of them in the proline-rich region P2 (box j
in Fig. 1) with a high sequence homology. P2
of Tau contains two Fyn binding sites, the classi-
cal Class II motif 2'PTTPTR?*?! (box w in Fig.
1) and the classical Class I motif 2*°RTPPKSP**
(box k). Only the latter site is present in MAP2c
(B8RTPPKSP?*). Binding assays performed with
synthetic biotinylated peptides showed that the Fyn
SH3 domain binds preferentially to the Class II site
of Tau (28) and Class I site of MAP2c (27). Our
analysis (Fig. 4) revealed that the selected ensembles
contained 6 % MAP2c structures with all residues of
the 28RTPPKSP?** motif in the polyproline II con-
formation, optimal for binding to the Fyn SH3 do-
main. This number is 25 times higher than the corre-
sponding population in the statistical coil pool. Only
two other sites outside the proline-rich regions P1
and P2 have populations of seven-residue polypro-
line II stretches higher than 5 % (one of them being
134ppSPPPSP!#4! with the discussed conformation
highly populated already in the statistical coil pool).
It shows (i) that the 2RTPPKSP*** sequence pref-
erentially adopts the conformation optimal for bind-
ing already in the free form of MAP2c, and (ii)
that the 288RTPPKSP?** site differs from the other
PXXP motifs not only in charge distribution, but also
by well defined conformation. The relaxation data
(Fig. 6) also show somewhat higher ordering for the
28RTPPKSP?* site.

Site of interaction with the non-canoni-
cal plectin SH3 domain — Interactions with plectin
where proposed to regulate the microtubule-
stabilizing activity of MAP2c. Binding of MAP2c to
the plectin SH3 domain and longer plectin fragments
was observed experimentally (30). X-ray crystallog-
raphy revealed that the plectin SH3 domain adopts
the standard fold, but it lacks some aromatic side-
chains involved in canonical interactions with PXXP
motifs and its PXXP-binding site is partially oc-



cluded (29). It was therefore proposed that the
plectin SH3 domain does not recognize the classical
PXXP motifs. Here, we tested this hypothesis for
intrinsically disordered MAP2c by solution NMR
spectroscopy. Decrease in NMR peak height, in-
dicative for MAP2c interactions with the well-folded
SR4-SR5-SH3 plectin fragment, was not observed
for the PXXP motifs, but in other regions (Fig. 9).
Some of the observed decrease can be explained
by electrostatic interactions of positively charged
MAP2c residues in MTBD, e.g. of 22 KQLR*! in
MTBRI1 and *2KNIR>> in MTBR3, resembling the
alternative SH3-binding motifs RXXK (52). How-
ever, significant binding was observed also in the
region 2% SLNSSISSARR?!8, preceding a positively
charged sequence 2’ RRTTRSEPIRRAGK?*". We
used the conformational analysis to examine if
this region can be distinguished by its struc-
ture. The analysis revealed (Fig. 4) that the
sequence “"°*SFSLNSSISSARR?!® is one of three
regions with the highest population of a-helical
stretches (together with the C-terminal helix and
with the RlI-site). Based on this finding, we pro-
pose that the SR4-SR5-SH3 plectin fragment rec-
ognizes also an amphiphilic helix consisting of
residues 2’°SFSLNSSISSARR?!3 and present in free
MAP2c.

Site of interaction with the PKA regulatory
domain — The sequence between Asp 83 and Glu
113 of MAP2c (box e in Fig. 1) aligns with a mo-
tif binding both RI- and RII-regulatory subunit of
PKA (54, 55) and the binding to the RII subunit is
well documented (5, 31, 38). Unlike the canoni-
cal SH3 domains, dimers of the regulatory subunits
of PKA form X-type helical bundles, recognizing
relatively long amphiphilic a-helices (at least five
turns) of well-folded A-kinase anchoring proteins
(55). Therefore, the obvious question was whether
such a helix is also significantly populated among
conformers of free MAP2c. Increased population of
a-helical conformation was observed in the selected
ensembles for residues Thr 80-Ser 91 and Lys 107—
Gln 110. In the middle part of the motif, the helical
population in the selected ensembles did not exceed
the statistical coil values, whereas the poly-proline
IT conformation was more populated. Particularly
low population of a-helix was observed for Gln 96
and Val 98. It shows that the RII-site does not form
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a highly populated, uniform secondary structure in
free MAP2c, as observed for the SH3-binding sites.
It should be emphasized that the lack of a uniform
secondary structure does not imply higher flexibility
of the RlIl-site. On the contrary, relaxation data re-
vealed that the whole RII-site is significantly more
ordered than other parts of MAP2c. Contacts ob-
served in PRE data suggest that hydrophobic inter-
actions with aromatic residues in the N-terminal re-
gion may be involved. Taken together, our results
indicate that the RII-site of MAP2c represents a rel-
atively complex local structure, qualitatively differ-
ent from the SH3-binding sites. Further investiga-
tion will be needed to find out if a regular helical
structure is formed in complex with the regulatory
subunit of PKA. In any case, it is interesting that the
a-helical conformation is more populated in termi-
nal regions of the motif whereas the poly-proline 11
conformation prevails in the interior part, which is
supposed to form the amphiphilic helix critical for
the interaction.

Global conformation — The obtained exper-
imental data not only describe local conformational
motifs, discussed above, but also provide informa-
tion about global structural features of MAP2c. The
overall shape of the MAP2c molecule is mostly
given by electrostatic interactions between acidic
N-terminal and positively charged C-terminal do-
mains. The structural effect of the intramolecular
electrostatic interactions is formation of bent "paper-
clip" conformations (56). At higher concentration,
formation of antiparallel dimers is expected based
on the charge distribution. Both types of structures
have been observed earlier by Wille, Mandelkow,
and Mandelkow (33). The antiparallel nature of the
dimers is important for the interpretation of the PRE
data. While PRE observed between the N-terminal
and C-terminal regions can be due to intramolecu-
lar and/or intermolecular interactions, the observed
PRE inside the N-terminal region, can be reliably
attributed to the intramolecular contacts, discussed
above. Regardless of the possible contribution of in-
termolecular contacts to the PRE data, it is clear that
the actual interacting regions of MAP2c and htau40
differ. The contacts of MTSL-labeled ES2C with
the vicinity of Trp 14 and the RII-site are in agree-
ment with the proposed model of the hydrophobic
neurosteroid binding site and its interactions with



the RII-site (57). Most of the other differences
can be explained by different charge distributions
in htau40 and MAP2c (13). In the cellular environ-
ment, the intramolecular contacts contribute to the
delicate equilibrium of interactions related to mi-
crotubule dynamics (58), aggregation of Tau (23),
and interactions with other partners. The biological
relevance of the intermolecular interactions is less
clear. Quantitative data (53, 59-63) show that pre-
natal cytosolic concentrations of MAP2c are compa-
rable with the concentrations of Tau in adult neurons
(5 uM-10 uM) (63), but formation of dimers can be
expected in regions with locally increased MAP2c
concentration (64). Interestingly, intermolecular in-
teractions in MAP2c are reduced by PKA phospho-
rylation. Notably, PKA phosphorylation sites differ
between MAP2c and Tau. For example, the major
PKA phosphorylation site in MAP2c, Ser 435, is
localized close to the C-terminus in a slightly posi-
tively charged region and its phosphorylation makes
interactions with the acidic N-terminal region in the
antiparallel dimer less favorable.

In summary, high-resolution NMR experi-
ments allowed us to study structural features and mo-
tions of a vast majority of MAP2c residues. Despite
the high complexity of the conformational ensem-
bles of MAP2c, the obtained data could be converted
into parameters describing populations of conforma-
tions, long-range contacts, and average dynamics of
individual amino acids using calibrated analytical
procedures (37) to derive representative ensemble
descriptions of the conformational space sampled
by AP2c. Results of the analysis and NMR relax-
ation data revealed lower flexibility and increased
populations of specific conformations in regions of
MAP2c interacting with other proteins. It indicates
that the local conformational propensities may play
an important role in the protein partner recognition.
As tested here for MAP2c, these conformational
propensities cannot be reliably predicted for IDPs by
currently available bioinformatics tools. Therefore
the presented type of structural ensemble analysis
based on set of experimental (NMR) data is essen-
tial for discovering yet unexplored binding motifs.

EXPERIMENTAL PROCEDURES
Sample preparation—The C348S and
E52C/C348S MAP2c mutants were obtained pre-
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viously (13). The same protocol was used to obtain
the double mutants (Q110C/C348S, T153C/C348S,
E203C/C348S, K282C/C348S and L402C/C348S),
using the QuickChange Lightning site-directed mu-
tagenesis kit (Agilent Technologies), following the
manufacturer protocol, using C348S MAP2c in
pET3a as a template. The result of mutations was
confirmed by sequencing. MAP2c expression, pu-
rification and phosphorylation by PKA were per-
formed as described earlier (13, 25, 65). The SR4-
SR5-SH3 plectin fragment was expressed in Es-
cherichia coli using a DNA construct including ex-
ons 16-21 (30).

Spin labeling — After purification, the cys-
teines were reduced by incubating MAP2c with 0.5
mM TCEP. For spin labeling, TCEP was removed
by size exclusion chromatography using the HiTrap
Desalting column (GE Healthcare), and the protein
was incubated in 20 mM potassium phosphate, 150
mM potassium chloride, pH 7.4. A ten times molar
excess of MTSL (Toronto Research Chemicals) dis-
solved in dimethyl sulfoxide was added, and MTSL
was allowed to bind overnight at 4°C. The protein
was then dialyzed into NMR buffer (50 mM MOPS,
150 mM sodium chloride, pH 6.9) before measure-
ment. Paramagnetic MTSL label was converted
into diamagnetic MTS by adding a 3 molar access
of ascorbic acid to the sample, and incubation 15
minutes at room temperature. 3D HNCO spectra
were measured for the paramagnetic and diamag-
netic MAP2c mutants. The PRE profiles were ob-
tained by calculating the ratio of peak intensities of
the paramagnetic and diamagnetic samples.

NMR spectroscopy—NMR experiments
were acquired using a 600 MHz, 850 MHz, and
950 MHz Bruker Avance III spectrometers equipped
with a TCI cryogenic probeheads with z-axis gradi-
ents, and a 700 MHz Bruker Avance III spectrometer
equipped with a "H/'*C/!'>N TXO cryogenic probe-
head with z-axis gradients. All experiments were
performed at 27°C with the temperature calibrated
according to the chemical shift differences of pure
methanol peaks. The indirect dimensions in 3D and
5D experiments were acquired in a non-uniformly
sampled manner. On-grid Poisson disk sampling
with a Gaussian probability distribution (66) was
applied.

The 3D (CACO)NCACO spectrum and the



5D CACONCACO spectrum (25) were acquired as
described earlier (13) to confirm assignment of mu-
tants used in the PRE study. The 3D HNCO (67)
spectra were acquired with spectral widths set to
18939 (aq) x 2000 (N) x 2000 (3C’)Hz and
maximal evolution times of 120ms for "N and
80 ms for '3C’ indirectly detected dimensions. The
overall number of 2048 complex points was ac-
quired in the acquisition dimension and 2000 hyper-
complex points were randomly distributed over the
indirectly-detected dimensions. Interactions with
the plectin SH3 domain were observed by com-
paring non-uniformly sampled HNCO spectra of a
samples containing 70 uM MAP2c with and with-
out 70 uM SR4-SR5-SH3 plectin fragment in 50
mM MOPS, pH 6.9, 150 mM NaCl, and 0.7 mM
TCEP. The spectra were recorded at 850 MHz and
10°C (due to the limited thermal stability of the SR4-
SR5-SH3 plectin fragment). Peaks with low inten-
sity in the spectrum of free MAP2c were excluded
from the analysis. 'D(NH) RDCs in PKA phos-
phorylated MAP2c were measured at 600 MHz us-
ing non-uniformly sampled 3D IPAP HNCO experi-
ment (68) with spectral widths of 2000 (:’N) x 2000
(13C’)Hz in the indirect dimensions, with maximal
evolution times of 180ms for >N and 120ms for
13¢’, and with 600 hypercomplex points randomly
distributed over the indirectly-detected dimensions.
The ' D(NH) values were calculated as the difference
between the splitting in spectra of phosphorylated
MAP2c in the isotropic buffer and in a stretched 5 %
polyacrylamide gel. The relaxation rates of 0.9 mM
unphosphorylated and phosphorylated MAP2c were
measured using 3D HNCO-based relaxation experi-
ments as described recently (39). The spectral den-
sity values J(wy) and J(0.86wy), i.e., J(61 MHz)
and J(515 MHz), respectively, at the 600 MHz spec-
trometer and J(96 MHz) and J(815 MHz), respec-
tively, at the 950 MHz spectrometer, were calculated
from R; and steady-state NOE using the reduced
spectral density mapping (47, 48). The J(0) val-
ues was calculated from R;, I'y, and steady-state
NOE measured at 950 MHz using the LNX protocol
described previously (46). The graphical spectral
density analysis was performed as described earlier
(46, 49, 51).

SAXS measurement — SAXS data were col-
lected on the beamline BM29 BioSAXS ESFR in
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Grenoble, France. The highest concentrations of
MAP2c in the dilution series were 12.0 mg/ml and
13.6 mg/ml for unphosphorylated and phosphory-
lated sample, respectively. The data were recorded
using the pixel IM PILATUS detector at a sample-
detector distance of 2.867 m, and a wavelength (1) of
0.099 nm, covering the range of momentum transfer
0.025nm™! < ¢ < Snm™! (¢ = 4nsin(6)/ A , where
26 is the scattering angle). 50 ul of the MAP2c pro-
tein solution was loaded into a flow-through quartz
capillary cell at 20.12 °C. The total exposure time
was 10 s per sample. Several successive frames (10
for MAP2c and 20 for the buffer) were recorded for
both the sample and the buffer. Each frame was
inspected to check for the possible presence of pro-
tein damage before calculating average intensities.
Solvent contributions (buffer backgrounds collected
before and after the protein sample) were averaged
and subtracted from the associated protein sample.
No radiation damage was observed during the data
collection. The data were processed using standard
procedures with PRIMUS (69).

Conformational analysis — Flexible-
meccano program (70, 71) was used to generate
a large ensemble of conformers of the protein. For
each conformer in the ensemble, the side-chain
and hydrogen atoms were added to the model
using SCCOMP (72). The random-coil torsion
angles database was used by flexible-meccano to
create an ensemble of 10,000 conformers. More-
over, a database of torsion angles filtered to be
in agreement with experimental chemical shifts of
BN, Ber, Bce, and 3CP was prepared in or-
der to enhance convergence of ASTEROIDS using
flexible-meccano/ASTEROIDS selection, and used
by flexible-meccano to create another ensemble of
74,000 conformers. Both ensembles were joined
together to define a starting pool of 84,000 conform-
ers and experimental observables were calculated
for each conformer. Chemical shifts were predicted
using SPARTA (36), SAXS using CRYSOL (73—
75), and PRE as described previously (76). Local
alignment windows of 15 amino acids in length were
used to calculate averaged RDCs (77). These were
then combined with a generic baseline to account
for long-range effects (34, 76). The starting pool
was used for selection of a sub-ensemble represent-
ing the disorder protein by ASTEROIDS (34). The



Conformation and Dynamics of MAP2c

optimal number of structures in the selection was (26) with the metric Arama defined for each residue
estimated from cross-validation procedures to be ap-  as

proximately 600. To achieve convergence, 200,000

iterations of the genetic algorithm were required.

The ASTEROIDS selection was repeated five times ARrama = Z (pcom(k) — pAST(k))Z’ (1)
with the same set of data to confirm reproducibility k
of torsion angle distribution in the selected en-
sembles and of the back-calculated chemical shifts,
PRE, and SAXS data. Differences between statis-
tical coil (COIL) sampling and selected ensembles
(AST) were characterized as described previously

where pcorL and past are statistical-coil and
selected populations, respectively, and k covers four
regions of the Ramachandran diagram (a-helix, -
sheet, polyproline II, and the remaining region in-
cluding the left-handed a-helical conformation).
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TABLES

Table 1: Validation of ASTEROIDS ensembles by prediction of independent observables
Passive"  Agama” XéV,ASTC XéV,COILd
TDINH) >0 1.81 (259)¢ 3.71 (259)
ID(NH) >0.05 1.66(134) 4.05(134)
'D(NH) > 0.1 1.69 (57) 4.09 (57)
AS6(N) >0 1.39 (463)  17.59 (463)
AS6(N) >0.05 1.72(207) 19.79 (207)
AS6(N) > 0.1 1.46 (90) 25.14 (90)
4 Experimental data against which the validity of the ensemble is tested (not included in the selection)
b Amino acids are only included if Aram, is greater than the reported threshold
¢ Reduced y? of passive data set compared with the ASTEROIDS selection, calculated with the uncertainty
of 1 Hz for ' D(NH) and 0.3 ppm for A6(N)
d Reduced y? of passive data set compared with the statistical coil description of the protein, calculated with
the uncertainty of 1 Hz for ' D(NH) and 0.3 ppm for A§(N)
¢ Number in parentheses refers to number of residues included in selection

16



Conformation and Dynamics of MAP2c

FIGURES
® ¢
2 o[ (6] [ | i ['f=m n o [p [qa |
MAP2c
a |g| f | | 1 1 1 Ll_i ‘ 1 1 1 |
1 50 100 150 200 250 300 350 400 450
1 200 250 350 400
@? I Q? I I I 1 1
htaudo [0 [] ] |
U i Im n__ o P lq [ [r]

50 100 150 300

[ PTTPTR] [RTPPKSP]

s t u [v X

Figure 1: Schematic drawing of the MAP2c and htau40 molecules. Regions associated with functions of
MAP2c, htau40, and both proteins are shown as cyan, pink, and gray boxes, respectively, and labeled with
letters: a—d, f, 1, proposed neurosteroid binding site (57); e, RlI-site; g, proline-rich region coded by Exon
7; h, proline-rich region coded by Exon 14 and phosphorylated by PKA; i, short proline-rich region P1 of
MAP2c; j, proline-rich region P2; k, Class I Fyn-binding site; m, MTBR1; n, MTBR3; o, MTBR4; p, region
R’; q, region homologous to the muscarinic receptor binding site of Tau; r, C-terminal @-helix; s, near-amino
terminal insert I1; t, near-amino terminal insert I12; u, region including a-helix 141 EDEAAGHVT!2; v,
long proline-rich region P1 of Tau; w, Class II Fyn-binding site; and x, MTBR2. Regions of Tau with
high homology with MAP2c are drawn closer to the scheme of MAP2c. Red and yellow circles indicate
residues phosphorylated by PKA with high and medium rate, respectively (11, 13). SH3 recognition motifs
are displayed in white boxes. Colored segments of the middle bar refer to clusters of spectral density values
plotted in Figs. 7b and 7d. Positions of Trp 14, Glu 52, and Tyr 67 of MAP2c are marked by letters W, E,
and Y.
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Figure 2: Concentration dependence of SAXS curves of (a) unphosphorylated MAP2c, (b) phosphorylated
MAP2c, and of (c) PRE data. In the SAXS dilution series, data for concentrated (approx. 0.3 mM) samples
are shown in red, for two-fold dilution in green, for four-fold dilution in cyan, and for eight-fold dilution in
blue. The initial regions of the scattering curves are shown in the insets. The relative intensity represents
radially averaged scattering after buffer subtraction divided by the concentration. No additional scaling
was applied. PRE values obtained for low (70 uM) and high (0.3 mM) concentration of unphosphorylated
MAP2c are shown in cyan and blue, respectively. PRE values obtained for low (70 uM) and high (0.3 mM)
concentration of PKA phosphorylated MAP2c are shown in gold and red, respectively.
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Figure 3: Comparison of experimental data with values calculated from ensembles selected by the ASTER-
OIDS analysis. (a) Secondary chemical shifts, (b) ! D(NH) RDCs, (c) SAXS curves, (d) PRE data (ratios
of signal intensities in the absence and in the presence of the paramagnetic label). Experimental data are
shown in cyan for 70 uM unphosphorylated MAP2c and in red for 0.3 mM phosphorylated MAP2c. The
corresponding values calculated from the ensembles of 600 structures selected by the ASTEROIDS analysis
are shown in black. The values calculated from the ensembles selected by the ASTEROIDS analysis of
experimental data excluding '>N chemical shifts and ' D(NH) RDCs to validate the selection procedure are
shown in green. Secondary chemical shifts are plotted only for 0.3 mM phosphorylated MAP2c¢ (red) because
the differences between data for 70 uM unphosphorylated MAP2c and 0.3 mM phosphorylated MAP2c were
negligible. Phosphorylated residues are marked by asterisks.
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Figure 4: Populations of torsion angles in the regions of the Ramachandran plot corresponding to the
(a,b) helical, (b) polyproline-II, and (c) S-sheet conformations. Populations of individual residues and of
continuous stretches of four and seven amino acids in the given conformation in the ensembles of 600
structures selected by the ASTEROIDS analysis of unphosphorylated MAP2c are shown as green, orange,
and red bars, respectively. The orange and red bars are placed in the middle of the stretches. Populations
in the statistical coil pool of structures are plotted as solid dark green, dark orange, and dark red lines,
respectively. Letters "P" above the plots indicate positions of prolines. Regions of extended and helical
conformations calculated using the SSP program (13, 35) are displayed as arrows and empty rectangles
above the plots, respectively. Regions where the population of stretches of four amino acids in the a-helical
conformation exceeds 5 % and 25 %, respectively, are displayed as pink and purple symbols in the upper
row above the plots; and regions where the population of stretches of four amino acids in the poly-proline 1T
conformation exceeds 5 % and 25 %, respectively, are displayed as gray and black symbols in the upper row
above the plots.
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Figure 5: Distances maps of (a) 70 uM unphosphorylated and (b) 0.3 mM phosphorylated MAP2c. The
distances between individual residues in 600 structures selected by the ASTEROIDS analysis are expressed
as logarithm of the ratio of distances observed in the selected ensemble (dast) to the distances in the statistical
coil pool (dcor), and plotted using the displayed color scale (red, shorter average distance in the selected
ensemble; blue, longer average distance in the selected ensemble).
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Figure 6: Values of the '°N relaxation rates of unphosphorylated (green and blue) and phosphorylated
(orange and red) MAP2c measured at 600 MHz (green and orange) and 950 MHz (blue and red). Outputs of
the following disordered predictors are plotted in the bottom panel: DISOPRED?2 (78) (gray), DISpro (79)
(cyan), IUPred short (80) (black), MetaDisorderMD2 (81) (orange), PrDOS (82) (blue), RONN (83) (green),
and Spritz (84) (red). Secondary structure motifs determined by the ASTEROIDS analysis are shown above
the plot (cf. Fig. 4).
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Figure 7: Values of spectral density function of unphosphorylated MAP2c. The J(0) values in all plots
were calculated from Ry, I'y, and steady-state NOE measured at 950 MHz. The J(wy) and J(0.86wy) values
calculated from R; and steady-state NOE for wy = 61 MHz and wy = 600 MHz are displayed as open
circles. The J(wn) and J(0.86wy) values calculated from R; and steady-state NOE for wny = 96 MHz and
wh = 950 MHz are displayed as filled circles. (a) All available values are displayed in Panel a as circles
color-coded in a rainbow manner according to the residue number (N-terminus is shown in blue, C-terminus
in red). (b) Values for selected regions are shown in Panel b as circles colored according to the regions:
vicinity of Trp 14 and Glu 51 in blue, Rll-site in green, MTBR3 in black, C-terminal « helix in red, and
vicinity of Ser 157 in gold (see Fig. 1). The limits corresponding to mono-exponential TCF for 600 MHz
and 950 MHz spectrometers are plotted as dotted and solid gray curves, respectively.
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Figure 8: Values of spectral density function of PKA-phosphorylated MAP2c. The J(0) values in all plots
were calculated from Ry, I'y, and steady-state NOE measured at 950 MHz. The J(wy) and J(0.86wy) values
calculated from R; and steady-state NOE for wy = 61 MHz and wy = 600 MHz are displayed as open
circles. The J(wn) and J(0.86wy) values calculated from R; and steady-state NOE for wny = 96 MHz and
wh = 950 MHz are displayed as filled circles. (a) All available values are displayed in Panel a as circles
color-coded in a rainbow manner according to the residue number (N-terminus is shown in blue, C-terminus
in red). (b) Values for selected regions are shown in Panel b as circles colored according to the regions:
vicinity of Trp 14 and Glu 51 in blue, Rll-site in green, MTBR3 in black, C-terminal « helix in red, and
vicinity of Ser 157 in gold (see Fig. 1). The limits corresponding to mono-exponential TCF for 600 MHz
and 950 MHz spectrometers are plotted as dotted and solid gray curves, respectively.
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Figure 9: Relative decrease of peak height in HNCO NMR spectra of 70uM MAP2c upon addition of
70uM SR4-SR5-SH3 plectin fragment. Secondary structure motifs determined by the ASTEROIDS analysis,
hydropathicity, and charge distribution are shown above the plot. The symbols used to describe the secondary
structure motifs are explained in Fig. 4. The hydrophaticity index according to Kyte and Doolittle (85) is
shown as darkness of the upper bar above the plot (white and black correspond to the values of —4.5 and
+4.5, respectively. The charge distribution is represented by the color in the lower bar above the plot,
corresponding to a relative electrostatic potential approximated by 3 ; CQ;/(do + di|n; — n;|), where Q; and
n; are charge and sequential number of the i-th residue, C is a constant including the electric permitivity,
and dj are distance constants. The ratio d;/dy was set to 2.0 and the colors were chosen so that red and
blue correspond to the highest negative and positive potential, respectively, which makes the color code
independent of C/dy (13). Letters "P" above the plot indicate positions of prolines.
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