Detailed Information on Publication Record
2018
Osteoarthritic process modifies expression response to NiTi alloy presence
VÁLKOVÁ, Lucie, Jana VEVERKOVÁ, Monika PÁVKOVÁ GOLDBERGOVÁ, Adam WEISER, Antonín DLOUHÝ et. al.Basic information
Original name
Osteoarthritic process modifies expression response to NiTi alloy presence
Authors
VÁLKOVÁ, Lucie (203 Czech Republic, belonging to the institution), Jana VEVERKOVÁ (203 Czech Republic, belonging to the institution), Monika PÁVKOVÁ GOLDBERGOVÁ (203 Czech Republic, guarantor, belonging to the institution), Adam WEISER (203 Czech Republic) and Antonín DLOUHÝ
Edition
Journal of Materials Science: Materials in Medicine, Dordrecht, Springer, 2018, 0957-4530
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
20601 Medical engineering
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 2.467
RIV identification code
RIV/00216224:14110/18:00101160
Organization unit
Faculty of Medicine
UT WoS
000443368900001
Keywords in English
Osteoarthritic process; Nickel-titanium alloy
Tags
International impact, Reviewed
Změněno: 10/2/2019 17:09, Soňa Böhmová
Abstract
V originále
Nickel-titanium alloy (nitinol, NiTi) is a biomaterial with unique thermal shape memory, superelasticity and high damping properties. Therefore NiTi has been used in medical applications. In this in vitro study, the effect of NiTi alloy (with two surface modifications - helium and hydrogen) on gene expression profile of selected interleukins (IL-1, IL-6 and IL-8) and matrix metalloproteinases (MMP-1 and MMP-2) in human physiological osteoblasts and human osteoarthritic osteoblasts was examined to respond to a question of the different behavior of bone tissue in the implantation of metallic materials in the presence of cells affected by the osteoarthritic process. The cells were cultivated in contact with NiTi and with or without LPS (bacterial lipolysaccharide). Changes in expression of target genes were calculated by 2(-Ct) method. An increased gene expression of IL-1 in osteoarthritic osteoblasts, with even higher expression in cells collected directly from the metal surface was observed. In case of physiological osteoblasts, the change in expression was detected after LPS treatment in cells surrounding the disc. Higher expression levels of IL-8 were observed in osteoarthritic osteoblasts after NiTi treatment in contact with alloy, and in physiological osteoblasts without relation to location in combination of NiTi and LPS. IL-6 was slightly increased in physiological osteoblastes after application of LPS. MMP-1 expression level was obviously significantly higher in osteoarthritic osteoblasts with differences regarding the metal surface and location. MMP-2 expression was decreased in both cell lines after LPS treatment. In conclusion, results of present study show that the NiTi alloy and the treatment by LPS, especially repeated doses of LPS, change the gene expression of selected ILs and MMPs in human osteoblast cell cultures. Some of the changes were depicted solely to osteoarthritic osteoblasts.
Links
GA15-16336S, research and development project |
|