
Modifying Hamming Spaces for Efficient Search

Vladimir Mic, David Novak, Pavel Zezula

Masaryk University
Brno, Czech Republic

17th November 2018

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 1 / 17

Similarity Search on Bit Strings – Motivation

Searching for similar objects

Wide range of applications

recommender systems, searching in biometrics, event detection, ...

Original complex objects are often described by bit strings

We assume mapping 1 to 1 between bit strings and objects

Similarity of objects ≈ similarity of bit strings

Hamming distance h:
having two bit strings o1, o2, it evaluates number of different bits

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 2 / 17

Similarity Search on Bit Strings – Motivation

Searching for similar objects

Wide range of applications

recommender systems, searching in biometrics, event detection, ...

Original complex objects are often described by bit strings

We assume mapping 1 to 1 between bit strings and objects

Similarity of objects ≈ similarity of bit strings

Hamming distance h:
having two bit strings o1, o2, it evaluates number of different bits

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 2 / 17

Problem: Efficiency of the Similarity Search

Use case: Query by example

Search for the most similar bit strings to a given query bit string

Problem: time needed for a query execution

Evaluation of the Hamming distance h is very efficient

≈ 107 Hamming distances are evaluated per second on an ordinary
computer

Problem: big datasets

Solution: indexes

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 3 / 17

The Hamming Weight Tree (paper from ICDM 2017) (1/5)

The Hamming Weight Tree (HWT):
indexing structure based on weights w of bit strings

Sepehr Eghbali et al.: Online Nearest Neighbor Search in Hamming
Space, ICDM 20171

Weight w(o) of a bit string o is a number of bits in o set to 1

Observation: lower bound on the Hamming distance h:

h(o1, o2) ≥ |w(o1)− w(o2)|

1www.cas.mcmaster.ca/ashtiani/papers/online-nearest-neighbor.pdf
Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 4 / 17

www.cas.mcmaster.ca/ashtiani/papers/online-nearest-neighbor.pdf

The Hamming Weight Tree (paper from ICDM 2017) (2/5)

Pruning ability of the weights of whole bit strings is weak

Lower bounds can be defined on a subparts of bit strings

HWT exploits these lower bounds in a tree-like structure:

Artificial root

Level 1: up to λ+ 1 nodes

Node labelled i covers bit strings o with weight w(o) = i
λ is maximum length of bit strings

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 5 / 17

The Hamming Weight Tree (paper from ICDM 2017) (3/5)

Level 2: Nodes labelled by [a, b]
a and b are weights of first and second half of bit strings

Level n: weights of 2n−1 parts of bit strings
Stored are just non-empty nodes
Dynamic depth of the HWT – maximum capacity of nodes, splitting
HWT is usually very unbalanced

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 6 / 17

The Hamming Weight Tree (paper from ICDM 2017) (4/5)

Overall lower bound on Hamming distance of two bit strings: sum of
partial lower bounds
Example:

partial weights of o1 10 20 15 12
partial weights of o2 10 15 5 20

partial lower bounds 0 5 10 8

Lower bound on h(o1, o2) is: 0 + 5 + 10 + 8 = 23
Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 7 / 17

The Hamming Weight Tree (paper from ICDM 2017) (5/5)

Search for k most similar bit strings to bit string q

Incremental search strategy : search for bit strings o in distance h(q, o)
equal to 0, then 1, 2 ...

... until the lower bounds in the HWT ensures that the rest of bit
strings is less similar to q then those already found2

A tightness of the lower bounds is crucial

2Details and full algorithm are in our paper
Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 8 / 17

Our Contribution

We investigate two ways to tighten lower bounds exploited by the
HWT

... both preserves pairwise Hamming distances h of bit strings

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 9 / 17

Flipping bits

Flipping bits

Having dataset X of bit strings, XORing some bits of all o ∈ X may
improve the lower bounds

Example: dataset with just two bit strings of length 2:

Before flipping After flipping

o1: 0 1 0 0
o2: 1 0 1 1

h(o1, o2): 2 2

lower bound on h(o1, o2): |1− 1| = 0 |0− 2| = 2

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 10 / 17

Flipping bits – Results of Our Analysis

Which bits should be flipped?

Consider the level 1 of the HWT (weight of all bit strings is
compared)

Weights of bit strings should be extreme (either close to 0 or to λ)

h(o1, o2) ≥ |w(o1)− w(o1)|

... i.e. pairwise bit correlations should be positive3

Lemma4: When ith bit of all o ∈ X is flipped, just signs of all pairwise
correlations Corr(i , j), 0 ≤ j < λ ∧ j 6= i is changed:

Corr(i , j) = −Corr(¬i , j)

3We use Pearson correlation coefficient
4Proved in the paper

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 11 / 17

Bit Correlations - Example

Bit number 0 1 0 1

Before flipping After flipping

o1: 0 1 0 0

o2: 1 1 1 0

o3: 0 1 0 0

o4: 1 0 1 1

Corr(0, 1) -0.577 +0.577

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 12 / 17

Flipping bits – Results of Our Analysis

Extension for other levels of the HWT:

Weights of particular subparts of bit strings should be extreme

... we need to maximise pairwise bit correlations of bits within the
parts (i.e. halves, quarters, ...) of bit strings

Let us now focus on a second way to tighten lower bounds ...

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 13 / 17

Permuting bits

Focus on levels deeper then 1 of the HWT

weights of subparts of bit strings are compared

Permutation of bits may improve the tightness of the lower bound
provided by particular levels of the HWT

Example: lower bounds provided by weights of the halves of bit strings

Before permuting After permuting
Bit index: 0 1 2 3 0 3 2 1

o1: 0 1 1 0 0 0 1 1
o2: 1 0 0 0 1 0 0 0

h(o1, o2): 3 3

lower bound: |1− 1|+ |1− 0| = 1 |0− 1|+ |2− 0| = 3
on h(o1, o2):

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 14 / 17

Flipping and Permuting Bits

We propose a greedy algorithm to determine
bits of bit strings to flip and
permutation of bits

at once to put correlated bit to the same blocks of bit strings
... and therefore to tighten lower bounds exploited by the HWT

Figure: Differences of the Hamming distances h and lower bounds provided by
particular levels of the HWT
Dark: original bit strings, light: with proposed modifications

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 15 / 17

Examples of results

Dataset of 20 million bit strings (DeCAF) λ = 64

Sequential evaluation 0.204 s
HWT original 0.122 s
HWT with modified bit strings 0.054 s

Dataset of 100 million bit strings (MPEG7) λ = 64

Sequential evaluation 1.017 s
HWT original 0.182 s
HWT with modified bit strings 0.030 s

Table: Times of the search for 1 most similar bit string to a query bit string q
(averages over 1,000 randomly selected q)

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 16 / 17

Conclusions

We are analysing weights of bit strings to exploit lower bounds on the
Hamming distance

We propose a heuristic that flips some bits of bit strings and permute
them to tighten lower bounds exploited by the Hamming Weight Tree
(HWT)

Despite the progress in an efficiency of query evaluation, the HWT
suffers from complex spaces

Vladimir Mic, David Novak, Pavel Zezula Modifying Hamm. Spaces for Efficient Search 17th November 2018 17 / 17

