2018
A Generalized Evaluation Framework for Multimedia Recommender Systems
GE, Mouzhi a Fabio PERSIAZákladní údaje
Originální název
A Generalized Evaluation Framework for Multimedia Recommender Systems
Autoři
GE, Mouzhi (156 Čína, garant, domácí) a Fabio PERSIA (380 Itálie)
Vydání
International Journal of Semantic Computing, World Scientific, 2018, 1793-351X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14330/18:00103876
Organizační jednotka
Fakulta informatiky
UT WoS
000453524500005
EID Scopus
2-s2.0-85058781460
Klíčová slova anglicky
Multimedia recommender system; multimedia recommendation; evaluation framework; evaluation criteria
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 29. 4. 2019 17:24, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
With the widespread availability of media technologies, such as real-time streaming, new Internet-of-Thing devices and smart phones, multimedia data are extensively increased and the big multimedia data rapidly spread over various social networks. This has created complexity and information overload for users to choose the suitable multimedia objects. Thus, different multimedia recommender systems have been emerging to help users find the useful multimedia objects that are possibly preferred by the user. However, the evaluation of these multimedia recommender systems is still in an ad-hoc stage. Given the distinct features of multimedia objects, the evaluation criteria adopted from the general recommender systems might not be effectively used to evaluate multimedia recommendations. In this paper, we therefore review and analyze the evaluation criteria that have been used in the previous multimedia recommender system papers. Based on the review, we propose a generalized evaluation framework to guide the researchers and practitioners to perform evaluations, especially user-centric evaluations, for multimedia recommender systems.