Detailed Information on Publication Record
2020
Kernel estimation of regression function gradient
KROUPOVÁ, Monika, Ivanka HOROVÁ and Jan KOLÁČEKBasic information
Original name
Kernel estimation of regression function gradient
Authors
KROUPOVÁ, Monika (203 Czech Republic, guarantor, belonging to the institution), Ivanka HOROVÁ (203 Czech Republic, belonging to the institution) and Jan KOLÁČEK (203 Czech Republic, belonging to the institution)
Edition
Communications in Statistics - Theory and Methods, Philadelphia, TAYLOR & FRANCIS INC, 2020, 0361-0926
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10103 Statistics and probability
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 0.893
RIV identification code
RIV/00216224:14310/20:00115009
Organization unit
Faculty of Science
UT WoS
000499984200011
Keywords in English
multivariate kernel regression; constrained bandwidth matrix; kernel smoothing
Tags
Tags
International impact, Reviewed
Změněno: 5/2/2021 09:09, Mgr. Marie Šípková, DiS.
Abstract
V originále
The present paper is focused on kernel estimation of the gradient of a multivariate regression function. Despite the importance of estimating partial derivatives of multivariate regression functions, the progress is rather slow. Our aim is to construct the gradient estimator using the idea of a local linear estimator for the regression function. The quality of this estimator is expressed in terms of the Mean Integrated Square Error. We focus on a crucial problem in kernel gradient estimation the choice of bandwidth matrix. Further, we present some data-driven methods for its choice and develop a new approach based on Newton's iterative process. The performance of presented methods is illustrated using a simulation study and real data example.
Links
MUNI/A/1418/2019, interní kód MU |
|