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1. INTRODUCTION

Consider the multiple regression model,

Y = 𝜃1n + X𝜷 + e, (1)

where Y = (Y1,… ,Yn)⊤ is the response n × 1 vector, X is the n × p matrix of real numbers, 𝜷 is
the p × 1 vector (p ≤ n) of unknown regression parameters, 1n = (1,… , 1)⊤ is the n × 1 vector of
1’s, and 𝜃 is an intercept parameter. The error vector e = (e1,… , en)⊤ has mutually independent
components ei which are independent and identically distributed (i.i.d.) random variables having
a cumulative distribution function (c.d.f.) F defined on the real line ℝ.

We assume that the design matrix X has a full rank p and consider the partitioning

𝜷 =
(
𝜷⊤

1 , 𝜷
⊤
2

)⊤
and X = (X1,X2),

where 𝜷1 is a p1-dimensional and 𝜷2 is a p2-dimensional vector with p = p1 + p2, so that (1) is
rewritten as

Y = 𝜃1n + X1𝜷1 + X2𝜷2 + e. (2)

Expression (2) allows us to effectively examine the settings with sparse parameters. If we suspect
that 𝜷 is sparse, we can express this by setting the sparsity condition as 𝜷2 = 0 or by making all
the 𝜷2 components small.

Estimation and variable selection are important aspects for the development of model
fitting and data analysis. The history of estimation theory changed its course radically since
Stein (1956) and James & Stein (1961) proved that the sample mean based on a sample from a
p-dimensional multivariate normal distribution is inadmissible under a quadratic loss for p ≥ 3.
This result gave birth to a class of shrinkage estimators in various forms and setups. Due to
the immense impact of Stein’s theory, scores of technical papers appeared in the literature
covering many areas of applications. Saleh & Sen (1978), Sen & Saleh (1987) and Saleh (2006)
reformulated and expanded Stein’s theory using the least squares theory, rank theory, M-theory
and quantile theory beginning in the 70s.

The next generation of ‘‘shrinkage estimators’’, known as penalty estimators, began in the
1970s with the pioneering work on ‘‘ridge regression’’ estimation for linear models by Hoerl &
Kennard (1970) based on the idea of ‘‘Tikhonov regularization’’ (Tikhonov, 1963). The ridge
regression estimator is the result of minimizing least squares criteria subject to some quadratic
restrictions (L2-function),

𝜷
RR
n (k) = argmin

𝜷∈ℝp

{
(Y − X𝜷)⊤(Y − X𝜷) + k𝜷⊤𝜷

}
with k > 0. (3)

A generalized ridge regression estimator may be defined as

𝜷
RS
n (K) = argmin

𝜷∈ℝp

{
(Y − X𝜷)⊤(Y − X𝜷) + 𝜷⊤K𝜷

}
, (4)

where K = diag (k1,… , kp) and kj > 0 for j = 1,… , p. Note that the penalty function (3) places
equal weights on the 𝜷’s, while (4) places unequal weights.

Frank & Friedman (1993) defined a class of ‘‘bridge estimators’’ defined by

𝜷
BE
n (𝜆n) = argmin

𝜷∈ℝp

{
(Y − X𝜷)⊤(Y − X𝜷) + 𝜆n1⊤p |𝜷|𝛾} ,

where 𝜆n > 0 and |𝜷 |𝛾 = (|𝛽1|𝛾 ,… , |𝛽p|𝛾 )⊤ with 𝛾 > 0.
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The choice of 𝛾 = 2 produces ridge estimates while 𝛾 = 1 relates to least absolute shrinkage
and selector operator (LASSO) introduced by Tibshirani (1996). It has become a very popular and
intriguing penalty estimator. This estimator is related to the estimators such as the ‘‘non-negative’’
garotte by Breiman (1996), smoothly clipped absolute deviation (SCAD) by Fan & Li (2001),
elastic net by Zou & Hastie (2005), adaptive LASSO by Zou (2006), hard threshold LASSO by
Belloni & Chernozhukov (2013), and by many others.

This paper introduces the R-estimators and the application of marginal distribution theory
to study the performance characteristics of two primary penalty estimators, namely ‘‘ridge
regression’’ and ‘‘LASSO’’ along with the preliminary test (PT) and Stein-type estimators. In
this respect, the work of Draper & Van Nostrand (1979) and Hansen (2016) are informative.
An important characteristic of LASSO is that it provides simultaneous estimation and selection
coefficients for linear models and can be applied when the dimension of the parameter space
exceeds the dimensions of the sample space.

The layout of this article is as follows. In Section 2, we define an ordinary R-estimator
and introduce its improved estimator as well as a penalty R-estimator. Section 3 is devoted to
asymptotic distributional bias (ADB) and L2-risk (ADL2-risk) of the R-estimators and Section 4
deals with the graphical and numerical assessment of the R-estimators. A real data example is
discussed in Section 5.

2. LINEAR MODEL AND R-ESTIMATORS

Consider the multiple regression model (2). We assume that:

(i) Errors are i.i.d. random variables with (unknown) c.d.f. F having an absolutely continuous
probability density function (p.d.f.) f with finite and nonzero Fisher information,

0 < I(𝑓 ) = ∫
∞

−∞

[
−𝑓 ′ (x)

𝑓 (x)

]2

𝑓 (x)dx < ∞.

(ii) For the definition of linear rank statistics, we consider the score generating function
𝜑 : (0, 1) → ℝ which is assumed to be non-constant, non-decreasing and square integrable
on (0, 1) so that

A2
𝜑 = ∫

1

0
𝜑2(u)du −

(
∫

1

0
𝜑 (u) du

)2

.

The scores are defined in either of the following ways:

an(i) = 𝔼[𝜑(Ui∶n)], or an(i) = 𝜑
( i

n + 1

)
, i = 1,… , n,

where U1:n ≤ · · · ≤ Un:n are order statistics from a sample of size n from the uniform
distribution  (0, 1).

(iii) Define

Cn = 1
n

n∑
i=1

(xi − x̄n)(xi − x̄n)⊤, (5)

where xi is the ith row of X and x̄n = 1
n

∑n
i=1 xi. We assume that

lim
n→∞

Cn = Ip and lim
n→∞

max
1≤i≤n

(xi − x̄n)⊤C−1
n (xi − x̄n) = 0. (6)
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For the R-estimation of 𝜷, define for b ∈ ℝp the rank of Yi − x⊤i b among Y1 − x⊤1 b,… ,Yn −
x⊤n b to be Rni(b). Then for each n ≥ 1, consider the set of scores an(1) ≤ · · · ≤ an(n) and define
the vector of linear rank statistics,

Ln(b) = (Ln1(b),… ,Lnn(b))⊤ = 1√
n

n∑
i=1

(xi − x̄n)an(Rni(b)). (7)

Since estimators Rni(b) are translation invariant, there is no need to adjust the intercept
parameter 𝜃.

For the R-estimation of 𝜷, one may use the rank-based objective function due to the following
result in Jaeckel (1972),

Dn(b) =
n∑

i=1

(Yi − x⊤i b)an(Rni(b)), (8)

where Dn(b) is a nonnegative, continuous, piecewise linear and convex function of b ∈ ℝp. Thus,
we define the unrestricted R-estimator (URE) as

𝜷n = argmin
b∈ℝp

Dn(b).

We note the connection between (7) and (8) as

∇Dn(b) = −Ln(b),

where ∇ is the sub-gradient.
Next, we review the asymptotic uniform linearity (AUL) result due to Jurečková (1971),

Jurečková & Sen (1996), and the asymptotic uniform quadraticity (AUQ) result due to Jaeckel
(1972), respectively, given by

lim
n→∞

P

(
sup||𝝎||<k

‖‖‖‖‖‖Ln

(
𝜷 + 𝝎√

n

)
− Ln(𝜷) + 𝛾(𝜑, 𝑓 )𝝎

‖‖‖‖‖‖ > 𝜀

)
= 0,

and

lim
n→∞

P
(

sup||𝝎||<k

‖‖Wn (𝝎)‖‖ > 𝜀

)
= 0,

where 𝜀 is non-negative,

Wn(𝝎) = Dn(𝜷 + n−1∕2𝝎) − Dn(𝜷) + 𝛾(𝜑, 𝑓 )𝝎⊤Ln(𝜷) −
1
2
𝛾2(𝜑, 𝑓 )𝝎⊤𝝎,

and

𝛾(𝜑, 𝑓 ) = ∫
1

0
𝜑(u)

{
−
𝑓 ′ (F−1 (u)

)
𝑓 (F−1(u))

}
du.

Thus, we conclude that as n → ∞,

||||||√n(𝜷n − 𝜷) − argmin
𝝎∈ℝp

Wn(𝝎)
|||||| P
−−→ 0,
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so that

√
n(𝜷n − 𝜷) − 𝛾−1(𝜑, 𝑓 )Ln(𝜷)

P
−−→ 0.

Hence,

√
n(𝜷n − 𝜷)


−−→ (0, 𝜂2Ip), n → ∞,

where 𝜂2 = A2
𝜑∕𝛾

2(𝜑, 𝑓 ).
The same results may be obtained by considering

L∗
n(b) = (Ln(𝑗)(b𝑗 , b(−𝑗)); 𝑗 = 1,… , p)⊤, (9)

where

Ln(𝑗)(b𝑗 , b(−𝑗)) =
1√
n

n∑
i=1

(xij − x̄𝑗)an(Rni(b𝑗 , b(−𝑗))), (10)

where bj is the jth coefficient and b(−j) is a (p − 1) × 1 vector excluding the coefficient bj. The
components of (10) may be called marginal statistics.

Thus, using AUL and AUQ, we find that as n → ∞

sup
∣𝜔𝑗 ∣<k

|Ln(𝑗)(n−1∕2𝜔𝑗b(−𝑗)) − Ln(𝑗)(0, 0) + 𝛾(𝜑, 𝑓 )𝜔𝑗| P
−−→ 0,

and

sup
∣𝜔𝑗 ∣<k

||||Dn
(
n−1∕2𝜔𝑗b(−𝑗)

)
− Dn(0, 0) + 𝛾(𝜑, 𝑓 )𝜔𝑗Ln(𝑗)(0, 0) −

1
2
𝛾2(𝜑, 𝑓 )𝜔2

𝑗

|||| P
−−→ 0.

Consequently, n → ∞,

√
n(𝛽jn − 𝛽𝑗)


−−→ (0, 𝜂2) for all 𝑗 = 1,… , n. (11)

Note that L∗
n(b1,… , bp) at (9) consists of mutually independent marginal components of

(10).

2.1. Penalty R-Estimators
Based on (11) we are able to define the LASSO R-estimator following Donoho & Johnstone
(1994) as

𝜷
LASSO
n (𝜆) =

(
sign

(
𝛽jn

)(
𝛽jn −

𝜆√
n
𝜂

)+

; 𝑗 = 1,… , p

)⊤

=

(
𝜂√
n

sign
(
Z𝑗

)
(|Z𝑗| − 𝜆)+; 𝑗 = 1,… , p

)⊤

,
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where Z𝑗 =
√

n
𝜂
𝛽jn. Note that

√
n𝛽 LASSO

jn (𝜆) =

{
𝜂
(
Z𝑗 − 𝜆sign

(
Z𝑗

))
, if |Z𝑗| > 𝜆,

0, otherwise.

Let ∣ Z1 ∣> 𝜆,… , ∣ Zp1
∣> 𝜆 and the rest of the p2 components are 0’s, then

√
n𝜷

LASSO
n (𝜆) = (𝜂(Z𝑗 − 𝜆sign(Z𝑗)), 𝑗 = 1,… , p1, 0⊤)⊤

is the vector of the LASSO estimator.
Next, we consider the ridge estimator of 𝜷, where one suspects that 𝜷2 = 0 may hold. We

define

𝜷
RR
n (k) = argmin

(b⊤1 ,b
⊤
2 )

⊤∈ℝp
{Dn(b1, b2) + k‖b2‖2} =

(
𝜷
⊤

1n,
1

1 + k
𝜷
⊤

2n

)⊤

.

Our problem is to compare the performance characteristics of ‘‘ridge’’ and LASSO estimators
with that of the Stein-type and preliminary test R-estimators with respect to the asymptotic
distributional mean squared error criterion. We present the preliminary test and Stein-type
R-estimators in the next section.

2.2. PTE and Stein-type R-Estimators
For the model (2), if we suspect a sparsity condition that 𝜷2 = 0, then the restricted R-estimator

(RE) of (𝜷⊤
1 ,𝜷

⊤
2 )

⊤ is 𝜷n = (𝜷
⊤

1n, 0
⊤)⊤. For the test of the null hypothesis o : 𝜷2 = 0 vs.

A : 𝜷2 ≠ 0, the rank statistic is given by

𝔏n = nA2
nL⊤

2n(0)L2n(0), (12)

where Ln(0) = (L⊤
1n(0),L

⊤
2n(0))

⊤ from (7),

A2
n = 1

n − 1

n∑
i=1

(an(i) − ān)2 and ān = 1
n

n∑
i=1

an(i).

It is well known that under model (2) and the assumptions (5) and (6) as n → ∞, 𝔏n follows the
𝜒2 distribution with p2 degrees of freedom (d.f.) under o. Then, we define the PTE estimator
of (𝜷⊤

1 ,𝜷
⊤
2 )

⊤ as

𝜷
PT
n = (𝜷

⊤

1n,𝜷
⊤

2n − 𝜷
⊤

2nI(𝔏n < 𝜒2
p2
(𝛼)))⊤,

where I(A) is the indicator function of the set A and 𝜒2
p2
(𝛼) is the 𝛼-level critical value of 𝜒2

distribution with p2 degrees of freedom.
Similarly, we define the James–Stein-type R-estimator

𝜷
JS
n = (𝜷

⊤

1n,𝜷
⊤

2n(1 − (p2 − 2)𝔏−1
n ))⊤,

and the positive-rule Stein-type estimator is given by

𝜷
S+
n = (𝜷

⊤

1n,𝜷
⊤

2n(1 − (p2 − 2)𝔏−1
n )I(𝔏n > p2 − 2))⊤.
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3. ASYMPTOTIC DISTRIBUTIONAL BIAS AND L2-RISKS OF THE ESTIMATORS

We test the null hypothesis o : 𝜷2 = 0 vs. a : 𝜷2 ≠ 0 based on the rank statistics 𝔏n of (12).
This test is consistent and its power tends to unity as n → ∞ for fixed alternatives. We consider
a sequence of Pitman’s alternatives A(n) defined by

A(n) ∶ 𝜷n = n−1∕2𝜹 = n−1∕2(𝜹⊤1 , 𝜹
⊤
2 )

⊤.

If 𝜹2 = 0, A(n) = o. Then, under {A(n)}∞n=1, the marginal asymptotic distribution of√
n(𝜷 jn − 𝜷𝑗) is p𝑗 (0, 𝜂

2Ip𝑗 ) for j = 1, 2. Hence, the ADB and asymptotic distributional
L2-risks (ADL2-risks) of the R-estimators are given below.

(i) URE:

(ADB⊤(𝜷1n),ADB⊤(𝜷2n)) = (0⊤, 0⊤),

(ADL2-risk(𝜷1n),ADL2-risk(𝜷2n)) = 𝜂2(p1, p2).

Therefore, ADL2-risk(𝜷n) = 𝜂2(p1 + p2) = 𝜂2p.

(ii) RE:

ADB⊤(𝜷1n),ADB⊤(0)) = (0⊤,−𝜹⊤2 ),

(ADL2-risk(𝜷1n),ADL2-risk(0)) = 𝜂2(p1,Δ2).

As a result, ADL2-risk(𝜷n) = 𝜂2(p1 + Δ2), where Δ2 = 𝜹⊤2 𝜹2∕𝜂2.

(iii) PTE:(
ADB⊤

(
𝜷1n

)
,ADB⊤

(
𝜷

PT
2n

))
= (0⊤,−𝜹⊤2 p2+2

(
𝜒2

p2
(𝛼) ; Δ2

)
,(

ADL2-risk
(
𝜷1n

)
,ADL2-risk

(
𝜷

PT
2n

))
=
(
𝜂2p1, 𝜂

2
[
p2

(
1 −p2+2

(
𝜒2

p2
(𝛼) ; Δ2

))
+Δ2

(
2p2+2

(
𝜒2

p2
(𝛼) ; Δ2

)
−p2+4

(
𝜒2

p2
(𝛼); Δ2

))])
.

Hence, the ADL2-risk of 𝜷
PT
n is given by

𝜂2
[
p1 + p2

(
1 − Hp2+2

(
𝜒2

p2
(𝛼) ; Δ2

))
+ Δ2

(
2Hp2+2

(
𝜒2

p2
(𝛼) ; Δ2

)
− Hp2+4

(
𝜒2

p2
(𝛼); Δ2

))]
,

where H𝜈(c;Δ2) is the c.d.f. of 𝜒2-distribution with 𝜈 d.f. and non-centrality parameter Δ2

evaluated at c.

(iv) JSE: (
ADB⊤

(
𝜷1n

)
,ADB⊤

(
𝜷

JS
2n

))
=
(

0⊤,−𝜹⊤2
(
p2 − 2

)
𝔼
[
𝜒−2

p2+2

(
Δ2)]) ,(

ADL2-risk
(
𝜷1n

)
,ADL2-risk

(
𝜷

JS
2n

))
=
(
𝜂2p1, 𝜂

2
[
p2 −

(
p2 − 2

)2𝔼
[
𝜒−2

p2+2

(
Δ2)]]) .
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Hence, the ADL2-risk of James–Stein estimator is given by the simplified form 𝜂2[p1 + p2 −
(p2 − 2)2𝔼[𝜒−2

p2
(Δ2)]], where 𝔼[𝜒−2𝜈

p2
(Δ2)] = ∫∞0 x−2𝜈dHp2

(x; Δ2).

(v) PRSE:(
ADB⊤

(
𝜷1n

)
,ADB⊤

(
𝜷

S+
2n

))
=
(

0⊤,ADB⊤
(
𝜷

JS
2n

)
−𝜹⊤2 𝔼

[(
1 −

(
p2 − 2

)
𝜒−2

p2+2(Δ
2)
)

I
(
𝜒2

p2+2

(
Δ2) ≤ p2 − 2

)])
,(

ADL2-risk
(
𝜷1n

)
,ADL2-risk

(
𝜷

S+
2n

))
=
(
𝜂2p1,ADL2-risk

(
𝜷

S+
2n

))
,

where

ADL2-risk
(
𝜷

S+
2n

)
= ADL2-risk

(
𝜷

JS
2n

)
− 𝜂2p2𝔼

[(
1 −

(
p2 − 2

)
𝜒−2

p2+2(Δ
2)
)2

I
(
𝜒2

p2+2

(
Δ2) < p2 − 2

)]
+ Δ2

{
2𝔼

[(
1 −

(
p2 − 2

)
𝜒−2

p2+2(Δ
2)
)

I
(
𝜒2

p2+2

(
Δ2) < p2 − 2

)]
+ 𝔼

[(
1 −

(
p2 − 2

)
𝜒−2

p2+4(Δ
2)
)

I
(
𝜒2

p2+4

(
Δ2) < p2 − 2

)]}
.

Hence, the ADL2-risk of 𝜷
S+
n is given by

𝜂2
[(

p1 + p2
)
− (p2 − 2)2𝔼

[
𝜒−2

p2

(
Δ2)] − R∗

]
,

where

R∗ = p2𝔼
[(

1 −
(
p2 − 2

)
𝜒−2

p2+2(Δ
2)
)2

I
(
𝜒2

p2+2

(
Δ2) < p2 − 2

)]
− Δ2

{
2𝔼

[((
p2 − 2

)
𝜒−2

p2+2(Δ
2) − 1

)
I
(
𝜒2

p2+2

(
Δ2) < p2 − 2

)]
−𝔼

[(
1 −

(
p2 − 2

)
𝜒−2

p2+4(Δ
2)
)2

I
(
𝜒2

p2+4

(
Δ2) < p2 − 2

)]}
.

(vi) Relative risk: (
ADB⊤

(
𝜷1n

)
,ADB⊤

(
𝜷

RR
2n (k)

))
=
(

0⊤,− k
k + 1

𝜹⊤2

)
,

(
ADL2-risk

(
𝜷1n

)
,ADL2-risk

(
𝜷

RR
2n (k)

))
=
(
𝜂2p1, 𝜂

2 p2 + k2Δ2

(1 + k)2

)
.

Hence ADL2-risk(𝜷
RR
n (k)) = 𝜂2p1 +

𝜂2

(k+1)2 (p2 + k2Δ2). Therefore, the optimum ADL2-risk

(𝜷
RR
n (kopt)) = 𝜂2

(
p1 +

p2Δ2

p2+Δ2

)
, since kopt = p2Δ−2.
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(viii) LASSO:

ADB(𝛽 LASSO
jn (𝜆)) = −{Δ𝑗[Φ(𝜆 − Δ𝑗) − Φ(−𝜆 − Δ𝑗)]

− [𝜑(𝜆 − Δ𝑗) − 𝜑(𝜆 + Δ𝑗)]} for 𝑗 = 1,… , p

and using Donoho & Johnstone (1994),

ADL2-risk
(
𝜷

LASSO
n (𝜆)

)
= 𝜂2𝜌ST(𝜆, 𝜹), 𝜹 = (Δ1,… ,Δp)⊤,

where

𝜌ST(𝜆, 𝜹) = p1(1 + 𝜆2) − (1 + 𝜆2) −
p1∑
𝑗=1

[Φ(𝜆 − Δ𝑗) − Φ(−𝜆 − Δ𝑗)]

+
p1∑
𝑗=1

Δ2
𝑗 [Φ(𝜆 − Δ𝑗) − Φ(−𝜆 − Δ𝑗)]

−
p1∑
𝑗=1

[(𝜆 − Δ𝑗)𝜑(𝜆 + Δ𝑗) + (𝜆 + Δ𝑗)𝜑(𝜆 − Δ𝑗)] + Δ2

with Δ2 =
∑p

𝑗=p1+1 Δ
2
𝑗 , and where Φ and 𝜑 are the c.d.f and p.d.f of  (0, 1), respectively.

3.1. Lower Bound for ADL2-Risk for LASSO
Consider asymptotic representation of the R-estimators of 𝜷:

𝛽jn = 𝛽𝑗 +
𝜂√
n

Z𝑗 , Z𝑗 ∼  (0, 1), 𝑗 = 1,… , p.

We wish to estimate (𝛽1,… , 𝛽p)⊤ with ADL2-risk R(𝜷∗,𝜷) = 𝔼[n‖𝜷∗ − 𝜷‖2]. We consider a
family of diagonal linear projections:

TDP

(
𝜷

LASSO
n (𝜆) , 𝝉

)
=
(
𝜏1𝛽

LASSO
1n (𝜆) ,… , 𝜏p𝛽

LASSO
pn (𝜆)

)⊤

for 𝜏1 ∈ (0, 1),… , 𝜏p ∈ (0, 1).
Such estimators either ‘‘keep’’ or ‘‘kill’’ each coordinate 𝛽jn with subset selection. We incur

a risk of 𝜂2 if we use 𝛽jn and a risk of 𝛽2
𝑗 if we use estimate 0 instead. Hence, the ideal choice of 𝜏 j

is I(|𝛿j| > 𝜂), that is, we keep only those predictors whose true coefficient is larger than the noise
level. Denote this risk R(TDP, 𝜹) which yields the lower bound of ADL2-risk of LASSO given by

R(TDP, 𝜹) =
p∑

𝑗=1

min
(
𝜂2, 𝛿2

𝑗

)
.

Suppose that there are p1 predictors whose true value is larger than the noise level 𝜂2, and the

remaining p2 values are estimated as zero. This configuration produces the estimate (𝜷
⊤

1n, 0
⊤)⊤.

Then the lower bound is

R(TDP, 𝜹) = 𝜂2(p1 + Δ2), Δ2 = Δ2
p1+1 + · · · + Δ2

p =
𝜹⊤2 𝜹2

𝜂2
,
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≤ ADL2-risk
(
𝜷

LASSO
n (𝜆)

)
.

Consequently, the asymptotic distributional L2-risk efficiencies (ADRRE) of the estimators are

ADRRE
(
𝜷n ∶ 𝜷n

)
=
(

1 +
p2

p1

)(
1 + Δ2

p1

)−1

, (13)

ADRRE
(
𝜷

LASSO
n ∶ 𝜷n

)
=
(

1 +
p2

p1

)(
1 + Δ2

p1

)−1

, (14)

ADRRE
(
𝜷

RR
n ∶ 𝜷n

)
=
(

1 +
p2

p1

)(
1 +

p2Δ2

p1
(
p2 + Δ2

))−1

, (15)

ADRRE
(
𝜷

PT
n ∶ 𝜷n

)
=
(

1 +
p2

p1

){
1 +

p2

p1

(
1 − Hp2+2

(
𝜒2

p2
(𝛼) ; Δ2

))
+Δ2

p1

(
2Hp2+2

(
𝜒2

p2
(𝛼) ; Δ2

)
− Hp2+4

(
𝜒2

p2
(𝛼); Δ2

))}−1

, (16)

ADRRE
(
𝜷

JS
n ∶ 𝜷n

)
=
(

1 +
p2

p1

){
1 +

p2

p1
− 1

p1

(
p2 − 2

)2𝔼
[
𝜒−2

p2

(
Δ2)]}−1

, (17)

ADRRE
(
𝜷

S+
n ∶ 𝜷n

)
=
(

1 +
p2

p1

){
1 +

p2

p1
− 1

p1
(p2 − 2)2𝔼

[
𝜒−2

p2

(
Δ2)]

−
p2

p1
𝔼
[(

1 −
(
p2 − 2

)
𝜒−2

p2+2(Δ
2)
)2

I
(
𝜒2

p2+2

(
Δ2) < (p2 − 2)

)]
+ Δ2

p1

[
2𝔼

[(
1 −

(
p2 − 2

)
𝜒−2

p2+2(Δ
2)
)

I
(
𝜒2

p2+2

(
Δ2) < (p2 − 2)

)]
− 𝔼

[(
1 −

(
p2 − 2

)
𝜒−2

p2+4(Δ
2)
)2

I
(
𝜒2

p2+4

(
Δ2) < (p2 − 2)

)] ]}
−1.

(18)

4. GRAPHICAL AND NUMERICAL ASSESSMENT OF THE R-ESTIMATORS

We first note that ADRRE as a function of Δ2 is decreasing and tends towards unity as Δ2 → ∞.

Clearly, under Δ2 = 0, (13)–(15), are equal to
(

1 + p2
p1

)
indicating that URE, RE and RR are

all L2-risk equivariant when sparsity conditions hold. As for PTE, JSE and PRSE, we have the
following expressions:

ADRRE
(
𝜷

PT
n ∶ 𝜷n

)
=
(

1 +
p2

p1

){
1 +

p2

p1

(
1 −p2+2

(
𝜒2

p2
(𝛼) ; 0

))}−1

ADRRE
(
𝜷

JS
n ∶ 𝜷n

)
=
(

1 +
p2

p1

){
1 + 2

p1

}−1

,
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TABLE 1: Maximum ADRRE of RE compared to URE (under the null hypothesis).

p1

p 2 3 4 5

10 5.00 3.33 2.50 2.00

20 10.00 6.67 5.00 4.00

30 15.00 10.00 7.50 6.00

40 20.00 13.33 10.00 8.00

60 30.00 20.00 15.00 12.00

128 64.00 42.67 32.00 25.60

ADRRE
(
𝜷

S+
n ∶ 𝜷n

)
=
(

1 +
p2

p1

)
{

1 + 2
p1

−
p2

p1
𝔼
[(

1 −
(
p2 − 2

)
𝜒−2

p2+2(0)
)2

I
(
𝜒2

p2+2 (0) < (p2 − 2)
)]}−1

.

Table 1 presents the ADRRE values for RE, LASSO, and RR R-estimators when Δ2 = 0 for
p1 = 2, 3, 4, 5 and p = 10, 20,… , 60, 128.

In Table 2, ADRRE values for p = 20 with (p1, p2) = (5, 15) is reported. In the supplementary
file, a table for (p1, p2) = (7, 33) is included.

Table 2 presents the ADRRE values of the six R-estimators for some selected values of Δ2.
From this table, we observe that ridge estimator uniformly dominates URE, PTE and Stein-type
R-estimators. On the other hand, RE and LASSO outperform URE, PTE, JSE and PRSE in
the subinterval (0, p2). If p1 is fixed and p2 varies, then ADRRE increases for Δ2 (Figure 1).
However, if p2 is fixed and p1 varies, then the ADRRE of all R-estimators decreases for each
value of Δ2. Then, for p2 small and p1 large, the ADRRE of LASSO, PTE, JSE and PRSE are
competitive—see the tables in the supplementary file for more information.

Furthermore, we found the order of ADRRE of URE, JSE, PRSE and RR as

ADRRE
(
𝜷

RR
n ∶ 𝜷n

) ≥ ADRRE
(
𝜷

S+
n ∶ 𝜷n

) ≥ ADRRE
(
𝜷

JS
n ∶ 𝜷n

) ≥ 1

uniformly, and that of RR and LASSO as

ADRRE
(
𝜷

LASSO
n ∶ 𝜷n

)
= ADRRE

(
𝜷

RR
n ∶ 𝜷n

)
in (0, 1),

and

ADRRE
(
𝜷

LASSO
n ∶ 𝜷n

)
< ADRRE

(
𝜷

RR
n ∶ 𝜷n

)
in [1,∞).

Finally, PRSE always outperforms JSE.
We mention a few features of the ADRRE expressions, using the LSE method and the related

finite sample efficiency, are the same as the ones we have here, see Saleh et al. (2017). Further,
we considered an ADRRE expression for changing c.d.f. F, but the ADRRE values do not
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TABLE 2: ADRRE for the estimators in case of p1 = 5 and p2 = 15.

PTE PTE PTE

Δ2 URE RE/LASSO 𝛼 = 0.15 𝛼 = 0.2 𝛼 = 0.25 JSE PRSE RRE

0 1.00 4.00 2.31 2.07 1.89 2.86 3.22 4.00

0.1 1.00 3.92 2.26 2.03 1.86 2.82 3.18 3.92

0.5 1.00 3.64 2.10 1.90 1.75 2.70 3.01 3.65

1 1.00 3.33 1.93 1.76 1.63 2.56 2.82 3.37

2 1.00 2.86 1.67 1.55 1.45 2.34 2.53 2.96

3 1.00 2.50 1.49 1.40 1.33 2.17 2.32 2.67

5 1.00 2.00 1.26 1.21 1.17 1.94 2.02 2.29

7 1.00 1.67 1.13 1.10 1.08 1.78 1.83 2.05

10 1.00 1.33 1.03 1.02 1.01 1.62 1.64 1.82

15 1.00 1.00 0.97 0.98 0.98 1.46 1.46 1.60

20 1.00 0.80 0.97 0.98 0.99 1.36 1.36 1.47

30 1.00 0.57 0.99 1.00 1.00 1.26 1.26 1.33

50 1.00 0.36 1.00 1.00 1.00 1.16 1.16 1.21

100 1.00 0.19 1.00 1.00 1.00 1.05 1.05 1.11

change. We studied the high-dimensional problem in depth and obtained similar expressions for
ADRRE. The results of this article will be reported in a separate paper as it involves substantial
additional work in deriving the ADRRE expressions.

5. APPLICATION ON REAL DATA

The following example comes from McDonald & Schwing (1973). They investigated the
dependence of mortality on some social and economic characteristics. More precisely, the
response variable is the total age-adjusted mortality rate per 100,000 (‘‘mortality’’) for Standard
Metropolitan Statistical Areas in 1959–1961. There are 15 regressors in the dataset including
those that describe weather conditions such as average annual precipitation, pollution level such
as relative hydrocarbon pollution potential, and demographics such as percentage of population
that are old.

First, we created principal components from the original regressors to ensure an orthonormal
matrix design. Explained variance by the first 10 principal components is displayed in Figure 2.
Note that the overall variance is equal to the number of original regressors p = 15.

Then, we modeled the dependency of ‘‘mortality’’ on p = 15 principal components. We
computed all the estimates mentioned above and used a bootstrap method to estimate their mean
squared errors and relative efficiencies.

We considered p2 = 9 coefficients to be small or zero (corresponding to principal components
2, 4, 5, 8, 10, 11, 13, 14, 15). We got these results thanks to the LASSO R-estimate method,
which performs the model selection. The selected model was later confirmed by the tests. The
model does not simply consist of the last none components (as one could expect), because they
are ordered according to the content of the information about regressors xi and this ordering does
not reflect their relation to the response variable.
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FIGURE 1: ADRRE of estimates of a function of Δ2 for p1 = 5 and different p2.

Estimates of mean squared error are summarized in Table 3. Estimates of relative efficiencies
with respect to the unrestricted R-estimate are summarized in Table 4. One may see that the
results correspond with the formulas derived in previous sections.

6. DISCUSSION

Comparison of ridge regression estimator with Stein-type estimator began with the work
of Draper & Van Nostrand (1979). The LASSO, with its ability to simultaneously estimate and
select variables, brought in several penalty estimators. For comparison, papers appeared based
on simulation studies without mathematical backup.
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FIGURE 2: Explained variance by the first 10 principal components.

TABLE 3: Estimates of mean squared error of the R-estimates.

URE RE/LASSO PTE(0.15) PTE(0.20) PTE(0.25) JSE PRSE RR

139 29.30 29.30 29.30 29.30 98.70 98.70 29.30

TABLE 4: Estimates of relative efficiencies of the R-estimates with respect to unrestricted R-estimate.

URE RE/LASSO PTE(0.15) PTE(0.20) PTE(0.25) JSE PRSE RR

1.00 4.74 4.74 4.74 4.74 1.41 1.41 4.74

In this paper, we consider rank-based LASSO, ridge, preliminary test and Stein-type
estimators and compare these estimators using ADL2-risks.

We have demonstrated that: (i) Ridge outperforms LASSO uniformly. LASSO and Ridge
are risk-equivalent in [0, 1] and Ridge outperforms LASSO uniformly when Δ2 is in (1,∞).
(ii) Neither LASSO nor PTE, JSE and positive-rule Stein-type estimator dominate the other
uniformly. LASSO dominates others for Δ2 ∈ [0, p2]. (iii) Ridge dominates preliminary test,
James–Stein and positive-rule Stein-type estimators, uniformly. (iv) LASSO dominates the
R-estimator uniformly for Δ2 ∈ [0, p2], outside this interval the R-estimator dominates.

Some of Hansen’s (2016) remarks hold except that he could not find the interval described
in (i)–(iv).
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