J 2019

Constant curvature models in sub-Riemannian geometry

ALEKSEEVSKIY, Dmitry, Alexandr MEDVEDEV and Jan SLOVÁK

Basic information

Original name

Constant curvature models in sub-Riemannian geometry

Authors

ALEKSEEVSKIY, Dmitry (826 United Kingdom of Great Britain and Northern Ireland, belonging to the institution), Alexandr MEDVEDEV (112 Belarus, belonging to the institution) and Jan SLOVÁK (203 Czech Republic, guarantor, belonging to the institution)

Edition

Journal of Geometry and Physics, Amsterdam, Elsevier Science BV, 2019, 0393-0440

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.056

RIV identification code

RIV/00216224:14310/19:00107198

Organization unit

Faculty of Science

UT WoS

000461538700017

Keywords in English

Curvature; SubRiemannian geometry; Lie algebra cohomology; Constant curvature spaces

Tags

International impact, Reviewed
Změněno: 21/1/2020 15:09, Mgr. Marie Šípková, DiS.

Abstract

V originále

Each sub-Riemannian geometry with bracket generating distribution enjoys a background structure determined by the distribution itself. At the same time, those geometries with constant sub-Riemannian symbols determine a unique Cartan connection leading to their principal invariants. We provide cohomological description of the structure of these curvature invariants in the cases where the background structure is one of the parabolic geometries. As an illustration, constant curvature models are discussed for certain sub-Riemannian geometries.

Links

GA17-01171S, research and development project
Name: Invariantní diferenciální operátory a jejich aplikace v geometrickém modelování a v teorii optimálního řízení
Investor: Czech Science Foundation