CALUORI, Guido, Jan PŘIBYL, Martin PEŠL, Jorge OLIVER-DE LA CRUZ, Giorgia NARDONE, Petr SKLÁDAL a Giancarlo FORTE. Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics. Frontiers in Physiology. Lausanne: Frontiers Media, 2018, roč. 9, AUG 17 2018, s. 1-11. ISSN 1664-042X. Dostupné z: https://dx.doi.org/10.3389/fphys.2018.01121.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics
Autoři CALUORI, Guido (380 Itálie, domácí), Jan PŘIBYL (203 Česká republika, garant, domácí), Martin PEŠL (203 Česká republika, domácí), Jorge OLIVER-DE LA CRUZ (203 Česká republika), Giorgia NARDONE (203 Česká republika), Petr SKLÁDAL (203 Česká republika, domácí) a Giancarlo FORTE (380 Itálie).
Vydání Frontiers in Physiology, Lausanne, Frontiers Media, 2018, 1664-042X.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 30105 Physiology
Stát vydavatele Švýcarsko
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 3.201
Kód RIV RIV/00216224:14740/18:00105343
Organizační jednotka Středoevropský technologický institut
Doi http://dx.doi.org/10.3389/fphys.2018.01121
UT WoS 000441953700001
Klíčová slova anglicky atomic force microscopy; cell biomechanics; BEEC; force mapping; mechanical modeling; stiffness tomography; Hippo pathway; mechanotransduction
Štítky 14110115, 14110513, CF NANO, podil, rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Pavla Foltynová, Ph.D., učo 106624. Změněno: 13. 3. 2019 12:27.
Anotace
The cell biomechanical properties play a key role in the determination of the changes during the essential cellular functions, such as contraction, growth, and migration. Recent advances in nano-technologies have enabled the development of new experimental and modeling approaches to study cell biomechanics, with a level of insights and reliability that were not possible in the past. The use of atomic force microscopy (AFM) for force spectroscopy allows nanoscale mapping of the cell topography and mechanical properties under, nearly physiological conditions. A proper evaluation process of such data is an essential factor to obtain accurate values of the cell elastic properties (primarily Young's modulus). Several numerical models were published in the literature, describing the depth sensing indentation as interaction process between the elastic surface and indenting probe. However, many studies are still relying on the nowadays outdated Hertzian model from the nineteenth century, or its modification by Sneddon. The lack of comparison between the Hertz/Sneddon model with their modern modifications blocks the development of advanced analysis software and further progress of AFM promising technology into biological sciences. In this work, we applied a rationalized use of mechanical models for advanced postprocessing and interpretation of AFM data. We investigated the effect of the mechanical model choice on the final evaluation of cellular elasticity. We then selected samples subjected to different physicochemical modulators, to show how a critical use of AFM data handling can provide more information than simple elastic modulus estimation. Our contribution is intended as a methodological discussion of the limitations and benefits of AFM-based advanced mechanical analysis, to refine the quantification of cellular elastic properties and its correlation to undergoing cellular processes in vitro.
Návaznosti
LM2015043, projekt VaVNázev: Česká infrastruktura pro integrativní strukturní biologii (Akronym: CIISB)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Czech Infrastructure for Integrative Structural Biology
LQ1601, projekt VaVNázev: CEITEC 2020 (Akronym: CEITEC2020)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, CEITEC 2020
VytisknoutZobrazeno: 24. 4. 2024 19:07