J 2018

Computation of Identification of a Gnostical Regression Model, Robust to Both Input and Output Disturbances with the Help of Parallel Computing–Basic Version

KNÍŽEK, Jiří, Lubomír PAVLIŠKA, Václav PROCHÁZKA, Adéla VRTKOVÁ, Ladislav BERÁNEK et. al.

Basic information

Original name

Computation of Identification of a Gnostical Regression Model, Robust to Both Input and Output Disturbances with the Help of Parallel Computing–Basic Version

Authors

KNÍŽEK, Jiří (203 Czech Republic, guarantor), Lubomír PAVLIŠKA (203 Czech Republic), Václav PROCHÁZKA (203 Czech Republic), Adéla VRTKOVÁ (203 Czech Republic), Ladislav BERÁNEK (203 Czech Republic), Pavel BOUCHAL (203 Czech Republic, belonging to the institution), Bořivoj VOJTĚŠEK (203 Czech Republic), Rudolf NENUTIL (203 Czech Republic) and Martin KUBA (203 Czech Republic, belonging to the institution)

Edition

International Journal of Mathematics and Computation™, CESER, 2018, 0974-5718

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10102 Applied mathematics

Country of publisher

India

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/00216224:14310/18:00101548

Organization unit

Faculty of Science

Keywords in English

Gnostics; statistics; environment; health; non-statistical methods; regression

Tags

International impact, Reviewed
Změněno: 12/3/2021 17:30, doc. Mgr. Pavel Bouchal, Ph.D.

Abstract

V originále

Our paper describes a demonstration of Kovanic's physical concept of the robust evaluation of data uncertainty on some regression tasks, i.e. in a very practical way. Special techniques of computation during the solution of regression tasks are explained in detail here. Properties of particular tasks' solutions are demonstrated also by graphical figuration.

Links

GA17-05957S, research and development project
Name: Evaluace nových potenciálních cílů a inhibitorů pro blokování vývoje metastáz u luminálních A nádorů prsu
Investor: Czech Science Foundation
MUNI/A/1100/2017, interní kód MU
Name: Podpora biochemického výzkumu v roce 2018
Investor: Masaryk University, Category A