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Abstract—A robust and accurate forecast of the Quality of
Service (QoS) attributes is essential for effective web service
recommendation, enhanced user experience, and service man-
agement. Deep learning methods, especially Long Short-Term
Memory Neural Networks (LSTM NN), have proven to be worthy
for sequence forecasting in various domains recently. In this
paper, we pilot an experimental application of LSTM NN in
the domain of QoS forecasting. We develop a LSTM NN model
for QoS prediction and compare its forecast performance with
existing approaches for QoS attribute forecasting – ARIMA
and Holt-Winters models. The approaches are compared on
two real-world QoS attribute datasets created using centralized
passive QoS attribute collection technique. Our results show that
LSTM NN improves the accuracy of QoS forecast for attributes
collected with high granularity while maintaining a reasonable
computation time.

I. INTRODUCTION

Web services (WSs) are an internal part of modern IT sys-
tems and applications nowadays because of their re-usability,
composability, and global accessibility via the Web. The large
number of the WSs has resulted in a shift in the web search and
recommendation practice. Given the high number of WSs, it is
highly probable, that there exist two functionality-equivalent
WSs. Therefore, it has become a convention to search and
recommend the WSs based on non-functional properties [1].
Among other non-functional properties studied, the Quality of
Service (QoS) is the most widely considered [2].

Quality of Service is an abstract term that is derived from
measurable QoS attributes [3]. The QoS attributes, such as ap-
plication response time (RT), or network transport time (NTT),
are highly volatile in time. [4]. The high volatility of the
QoS attributes represents a challenge for web service search
and recommendation systems. The frequency of the QoS
attributes updates is usually not high enough to provide up-
to-date data for reliable service recommendation. Moreover,
the measurement of QoS attributes by service providers has
shown to be unreliable or service degrading [5]. To obtain an
accurate, up-to-date QoS attributes for WSs recommendation,
most existing studies leverage time series forecasting [2].

A challenge for QoS attributes forecast is to determine,
which time series forecasting method is the most suitable
for forecasting the WSs QoS attributes. The suitability is
determined from the performance of the forecasting methods,
mostly forecast accuracy. Syu et al. [2] provided a comprehen-

sive empirical study on the comparison of available methods
for QoS attribute forecasting. Since the publication of the
study, new promising methods for time series forecasting have
been introduced, though. Most notably, deep learning meth-
ods, especially Long Short-Term Memory Neural Networks
(LSTM NN), show promising results in time series forecasting
tasks in other domains [6]. To the best of our knowledge,
the application of these novel approaches to QoS attributes
forecast tasks, and their evaluation are still missing.

In this paper, we aim to address this niche and evaluate
the suitability of LSTM NN for QoS forecasting. We compare
the forecast accuracy of LSTM NN with the accuracy of two
other methods commonly used for time series forecasting –
ARIMA and Holt-Winters model. Apart from the forecast
accuracy comparison, we investigate the time cost of the
model creation. The method is evaluated on five different
QoS attributes measured for two WSs at two different levels
of granularity. To create the QoS attribute’s time series, we
employ a centralized passive collection of QoS attributes that
enables transparent continuous collection of QoS attributes
even in large-scale high-speed networks and does not create a
negative impact on the monitored services. The QoS attribute
time series, source code, and experiment results are publicly
released at [7] to make our research reproducible.

The main contributions of our work are threefold:

• introduction of the method for centralized collection of
QoS attributes,

• development of LSTM NN model for QoS attribute
forecast,

• evaluation of the LSTM NN model performance (preci-
sion and time complexity) at real-world QoS attributes
time series.

This paper is organized as follows. In Section II, we present
a centralized collection of QoS attributes based on the passive
observation of network traffic. Next, we describe a theoretical
background of the selected methods for time series forecasting
in Section III. Experiment methodology, dataset description,
and forecast models description are outlined in Section IV.
Next section reveals the actual settings of the forecasting
models estimated the provided dataset. Section VI presents the
results of the forecast evaluation of the selected methods. The
results are discussed in Section VII. Section VIII overviews
the relevant related works, and Section IX concludes the paper.978-3-903176-15-7 c© 2019 IFIP



II. CENTRALIZED QOS ATTRIBUTE COLLECTION

The QoS attributes are highly volatile in time [4]. Hence,
WSs search and recommendation services require most recent,
near real-time measurements of QoS attributes. A straight-
forward solution to achieve an up-to-date data is an active
measurement of QoS attributes. A system for active QoS
measurement sends out periodical service invocations and
determines the QoS attribute values based on a service reply.
The service invocation approach to QoS attribute measurement
provides an accurate data on the one hand. On the other
hand, the invocation suffers from several disadvantages. Since
frequent observations are required, the invocation of services
produces extra overhead for the service. Further, monitoring
of several services (e.g., web instances in a cloud) further
increases the number of invocations necessary, which adds
further costs to QoS measurement. Apart from this approach,
there is still a lack of approaches on how to obtain a frequently
updated QoS information [5].

We show that an alternative approach to active QoS attribute
collection is IP flow network monitoring. Majority of the
QoS attributes can be obtained from packet-level network
analysis. It is possible to determine the QoS attributes from
packet key values, e.g., timestamps, TCP flags, payload sizes,
fragmentation, and so forth. Architectures for flow traffic
measurement mainly serve to provide network visibility, for
network reporting, and security measurements. These architec-
tures are designed to measure traffic flows even in high-speed,
large-scale networks [8]. A flow measurement architecture
consists of network probes and collectors. A probe observes
packets at an observation point in a network and aggregates the
packets into IP flows. All packets in an IP flow have the same
flow keys, e.g., source and destination IP, port and protocol [9].
The IP flows are collected, stored, and analyzed at a collector.

Modification of network probes used for network traffic
monitoring, so that they can observe packet keys needed for
QoS attribute computation, allows for passive measurement of
QoS attributes even at large-scale and at high speeds. Such a
modification of probes enables us to monitor, among others,
application response time, network transport time, transaction
size, packet fragmentation, and jitter. These attributes can be
measured for all client-service communications observed in a
network. This approach enables centralized monitoring of WSs
performance with high granularity at a large scale. Moreover,
the network traffic flow measurement is transparent and do not
add any overhead at either the client or server side as the data
are monitored in a network. Beyond that, we can measure a
number of concurrent users of the service, which would be
impossible in case of active service invocation used for QoS
measurement.

The optional location of flow observation points anywhere
in a network allows for precise QoS measurement. If an
accurate measurement of the user experience is required,
we place an observation point close to the client-side, and
the observations include both server and network response
times. In case only server response time is of interest, the

observation point is placed close to the server. The location of
an observation point at the network perimeter allows for QoS
monitoring with the purpose of maintaining the service level
agreements.

III. FORECASTING METHODS

Time series analysis and forecasting can be performed
using a wide range of algorithms. For the forecast of QoS
attributes, we choose to employ AutoRegressive Integrated
Moving Average (ARIMA) model, Holt-Winters Exponential
Smoothing (Holt-Winters), and Long Short-Term Memory
Neural Networks (LSTM NN). The ARIMA and Holt-Winters
are methods frequently used for forecasting in QoS and net-
work traffic analysis domain [4, 10]. Therefore, these methods
can be naturally used as a baseline for comparison of the
LSTM NN forecast performance. In this section, we describe
these selected methods.

A. ARIMA Model

ARIMA model is based on AutoRegressive Moving Average
(ARMA) model proposed by Box and Jenkins [11]. The main
assumption for the ARMA model is the stationarity of the
time series. The ARIMA model overcomes this limitation
by converting a non-stationary time series into a stationary
one via differencing of time series – a stationary time series
is created by computing the differences between consecutive
observations of a time series.

The ARIMA(p, d, q) model is defined as

(1−φ1B−· · ·−φpBp)(1−B)dyt = c+(1+θ1B+· · ·+θqBq)εt
(1)

where εt is white noise and B is backshift operator defined
as Byt = yt−1. The autoregressive polynomial of order p is
AR(p) = (1 − φ1B − · · · − φpB

p) and the moving average
polynomial with order q is MA(q) = (1 + θ1B + · · · +
θqB

q). The parameter d is a differencing order and formula
(1 − B)d represents the differencing of the time series. The
autoregressive coefficients φ = (φ1, · · · , φp)T and moving
average coefficients θ = (θ1, · · · , θq)T can be estimated using
statistical approaches, e.g., the least square method or the
maximum likelihood.

B. Holt-Winters

Holt-Winters forecasting procedure belongs to the univariate
projection methods where forecasts are based only on the past
values of the forecasted variable. The Holt-Winters approach
generalizes simple exponential smoothing to deal with a trend
and seasonal variation of a time series [12]. Compared to the
previous model, it can be initialized with a fewer data.

There exist two types of Holt-Winters model - additive and
multiplicative. The additive model assumes a constant size of
the seasonal component of a time series, while the multiplica-
tive model assumes a proportional seasonal component to the
deseasonalized mean level. The additive seasonal Holt-Winters
model is defined as [13]:



Lt = α(yt − It−p) + (1− α)(Lt−1 + Tt−1) (2)
Tt = β(Lt − Lt−1) + (1− β)Tt−1 (3)
It = γ(yt − Lt−1 − Tt−1) + (1− γ)It−p (4)

where 0 < α, β, γ < 1 are smoothing parameters for mean
level Lt, trend Tt and seasonal index It, and p is a season
length. For a definition of the multiplicative model see [13].

A new forecast for yt k periods ahead is given by

ŷt(k) = Lt + kTt + It−p+1+(k−1)modL (5)

Initial values for level, trend, and seasonal component can
be chosen randomly or by the average of the early observa-
tions. The model parameters α, β, γ are can be estimated using
the least square method, the maximum likelihood method,
or can be based on the Akaike’s (AIC) or Bayesian (BIC)
Information Criteria.

C. LSTM Neural Network

Long Short-Term Memory Neural Network (LSTM NN)
belongs to the family of recurrent neural networks (RNN).
RNN can send their output back to previous layers which
allows information to persist. Although RNNs can handle
long-term dependencies in theory, the practical evaluation
shows that RNN does not seem to be able to capture them [14].
LSTM NN was proposed by Hochreiter et al. in [6] to address
this issue of RNN. LSTM NN introduces novel single cell
layers that can successfully solve long time lag tasks that have
not been solved by RNN before.
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Fig. 1: LSTM Neural Network [15]

The schema of the LSTM NN is depicted in the Figure 1.
A RNN is a chain of repeating modules with a single layer.
The LSTM NN maintains the chained structure and introduces
interconnected multiple layers in a single module. Each repeat-
ing module is represented by a cell state Ct. Each layer is able
to add or remove information from a cell state via regulatory
gates (¬, ­, ®).

The first gate ¬ is called the forget gate. This layer contains
a function that decides which elements of the state Ct−1 are
kept or forgotten based on input Xt and ht−1. Second gate
­, the input gate, decides which values are updated it, and
creates the candidate vector of values C̃t. The new cell state
is then computed as

Ct = ft ∗ Ct−1 + it ∗ C̃t. (6)

The output gate ® defines outputs of the cell. First, a
function ot decides which parts of the cell state Ct are used
for output. Next, the cell state Ct is transformed via tanh
function and the final output ht = ot ∗ tanhCt is computed.
The cell state Ct and output value ht serve as an input for a
next module iteration. The LSTM NNs is iteratively trained on
training data using backpropagation algorithms. The weights
and parameters are optimized using optimization algorithms
and loss functions.

The LSTM NNs have recently gained attention as world-
leading vendors used them in their product, such as Google for
Google Translator [16], Apple for Quicktype keyboard [17].
We believe that the properties of LSTM NN, especially the
ability to solve long time lag tasks, fits tasks for QoS attribute
forecasting and can increase the precision of QoS forecasts.

IV. EXPERIMENT METHODOLOGY

This sections provides a detailed description of the exper-
iment setup including the dataset description, construction of
the forecasting models, and performance evaluation method-
ology.

A. Dataset

We collected QoS attributes for two public web services.
The first monitored service (SERV-1) is a portal for electronic
information resources available at our university. This portal
serves as a search engine for licensed resources for science,
research, and teaching provided for our students. The second
monitored service (SERV-2) is a web presentation of the
Faculty of Science. While the first service is dynamic and
interactive, the second one represents a static web presentation.

Both services were monitored over a month period from
June 16th to July 15th, 2018. Using the approach described
in Section II, we collected QoS attributes listed in Table I.
Number of concurrent users denotes the number of users
visiting a page in parallel in an observation window. Appli-
cation response time denotes the time between a query and
its response. This attribute includes both network response
time and time needed for query processing on the server side.
Transaction count represents a number of unique transactions
denoted by URL path. Network transport time is defined as
the time for which a transaction is transferred over a network,
and Transport size shows the size of transactions observed
in a given window. For each attribute, we measured various
statistics such as count, minimum, maximum, average, values
of 50-th, 90-th, and 99-th percentile (p50, p90, and p99).

TABLE I: Monitored QoS Attributes

QoS Attribute Measured Statistics

Number of concurrent users (USR) count
Application response time (s) (ART) min, max, avg, p50, p90, p99
Transaction count (TC) count
Network transport time (s) (NTT) min, max, avg, sum
Transport size (s) (TS) min, max, avg, sum



The attribute’s statistics that enter the experiment are high-
lighted in Table I in bold. For ART attribute, we choose to use
the average and value of the 99-th percentile for all transaction
in a given time window. The average is a typical statistics
computed in the QoS domain. The 99-th percentile is chosen
to test the forecast of outlying values of ART, which could be
used for the forecast of ART depreciation. For NTT attribute,
we select average over all transactions. TS is more suitably
represented by a sum of transport size of all transaction than
by average transaction size, which does not reflect the number
of transactions. The samples of the measured QoS attribute
time series are provided in Figure 2.

The time series were collected in two different granularity
settings - 5 minutes and 1 hour. The 5-minute granularity
represents a normal update interval used in network monitoring
domain. The 1-hour granularity still provides a sufficient
number of observations per day, on the one hand, and adequate
level of aggregation to both smooth a time series and main-
tain main series characteristics, on the other hand. Missing
observations in time series (1.15% of all observations) were
substituted by the linear interpolation.

The dataset was split into training and testing dataset.
The training dataset contains one week period and testing
dataset covers the remaining three weeks. The training dataset
contains enough data to capture day-night seasonal pattern
commonly observed at several QoS attributes, e.g., number of
users. The trained models are expected to capture this pattern.
Once a model is trained on the training dataset, a testing
dataset is used for model performance evaluation. The size
of the testing dataset enables us to evaluate even a short-term
forecast performance of the models.

B. Forecast

We describe the taxonomy of forecast types in this section
and identify the forecast type used for QoS attribute forecast-
ing in this paper. The taxonomy categorizes the forecast by
the time scale, number of forecasted observation and by the
forecast frequency.

The forecast can be classified into following four categories,
depending on the time scale [18]: real-time, where forecast
does not exceed several minutes, short-term, where values for
one to several hours are forecast, middle-term, for several days
long forecast, and long-term, where forecasts for more than
several months or years belong.

Another approach to forecast classification is to differentiate
the forecasts according to the number of forecasted observa-
tion, regardless of the predicted timescale. One-step forecast
predicts one observation ahead, while multi-step predicts more
than one observation points from the training data.

Last, the forecast can be classified by the frequency of the
forecasts. One-time forecast is produced only once and usu-
ally serves for static, batch-based tasks. Continuous forecast
produces new forecasts for a given scale each time a new
observation is available.

In our paper, we focus on continuous, one-step forecast that
covers real-time scale, when considering five-minute granular-

ity, and short-time scale in case of one-hour granularity of a
time series.

C. ARIMA Model Construction

We construct ARIMA(p, d, q) model according to the Box-
Jenkins methodology [19]. The model is constructed in the
following steps.

First, we estimate the differencing parameter d. We in-
crementally increase the differencing order of a time series.
Each differenced time series is tested for stationarity using
the Augmented Dickey-Fuller test. Once a differenced time
series passes the test, the differencing parameter d is set as
the lowest differencing order of the tested time series.

Second, we estimate the autoregressive and moving average
parameters p, q. We plot an autocorrelation plot (ACF) and
a partial autocorrelation plot (PACF) for each time series to
identify parameters p and q, respectively. The ACF is plotted
up to 250 lag order. The window for PACF contains 50
observations. The parameters are identified from spikes in
the plots. In case more parameter combinations are identified,
we employ AIC to select the best combination of the model
parameters.

Third, we estimate a model representing the time series. The
model is fitted by exact maximum likelihood using Kalman
Filter. First, we maximize the conditional sum of squares
likelihood. Next, we use the conditional values as starting
values for the computation of the exact likelihood via the
Kalman filter. The maximum number of iterations of the
function evaluation is set to 500.

The model fit is performed for each new forecast. Once a
model is fitted, a one-step, continuous forecast is computed
from the model.

D. Holt-Witers Model Construction

The first step of Holt-Winters model construction is the
identification of the model type – additive or multiplicative.
The identification of the model type is based on manual
inspection of the seasonal and trend components of a time
series. If the seasonal component increases in the exponential
fashion, the model is multiplicative, otherwise the additive
model is applied. For the identification of the level, trend and
seasonality presented in a time series, we employ seasonal
decomposition using moving averages.

Second step is to identify a season length using both
information from ACF, PACF, and seasonal decomposition of
a time series. When estimating the season length, we take into
account the real-world properties of the network traffic, such
as day-night and week patterns.

Third, the model is fitted by maximum likelihood estima-
tion. As we expect the time series to represent the additive
model, the maximum likelihood estimation provides the same
results as the minimization of the sum of squares. We do not
pose any restriction on the model parameters (except for the
case of missing trend or seasonal component), nor we set any
initial values of the model’s parameters. The final model is
chosen based on the corrected AIC criterion.
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Fig. 2: QoS attributes time series (SRV-1, 5-minute granularity)

E. LSTM Neural Network Model Construction

The LSTM NN networks are sensitive to large scaled values
in data. According to [20], the data should be rescaled when
a sigmoid activation function is used. Hence, we rescale the
time series to the interval < 0, 1 >.

We implement a RNN that consists of three layers – input,
hidden, and output. For one step prediction, we need to have
exactly one input and one output node. The number of hidden
layers is determined by an experimental evaluation concerning
the time complexity of the model training.

The hidden layer consists of LSTM cells with the sigmoid
activation function, which reflects initial data transformation.
The NN is configured to use Mean Square Error (MSE) as the
stop loss function that is minimized in the backpropagation
process during the model fit. The backpropagation process uses
the Stochastic Gradient Descent (SGD) optimizer with default
parameters to achieve the optimal accuracy of the model. The
number of iteration for LSTM NN is experimentally derived
from the learning curve of the NN. The model is fitted on
the training dataset and is further used for prediction on the
training dataset.

F. Performance Evaluation

We evaluate the performance of the LSTM NN with re-
spect to forecast accuracy and time needed to fit a model.
To compare the forecast accuracy of the LSTM NN with
other approaches, we employ Mean Absolute Percentage Error
(MAPE) metrics. We prefer MAPE to the commonly used
Mean Absolute Error (MAE) or Mean Squared Error (MSE),
as MAPE abstracts from the scale of time series and allows
for comparison of QoS attributes prediction regardless the
popularity of the service. The MAPE is computed as follows:

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ ∗ 100 (7)

where yt is the observed value and ŷt is the forecasted value
provided by a given model.

The time needed to fit a model is measured from the start
of the model fitting process and ends when the best fit for a
model is found. The data preparation tasks, such as missing
values interpolation, are not included in this measurement, as
well as the time needed to compute the forecast. We choose to
compare only the time needed to fit a model, as it is the most
computationally demanding task. Once a model is estimated,
the actual forecast can be computed from the fitted model
nearly instantly. The time cost was measured on a machine
with 6 AMD Ryzen5 CPUs ∼3.8GHz, 6GB RAM, and 50GB
HDD.

V. FORECAST MODELS SETTINGS

The methodology for model construction described in the
previous section was applied to the training dataset to esti-
mate the models for the forecast. This section describes the
properties of the time series of measured QoS attributes that
are relevant for the model estimation. Next, we present the
models estimated on the training data set that we use for the
forecast evaluation.

A. Properties of QoS Attribute Time Series

The measured time series can be divided into two separate
clusters – a time series showing a diurnal seasonality and the
time series without the seasonality. The USR and TC time
series show a strong diurnal pattern (see Figure 2a). We can
differentiate working hours showing an increase in user and
transaction counts and night hours with a significant drop in
counts. Besides day-night pattern, we observe working days–
weekend seasonality. The number of transactions is lower
during a weekend compared to business days. Moreover, we
observe a strong positive correlation between these time series.

The ART, NTT, and TS time series do not show any sea-
sonality as the latter time series (see Figure 2b). It shows that



the monitored services and associated network infrastructure
have enough resources at disposal so that an increase in the
number of the transaction does not slow down network or
service and does not increase response time. We expect that
ART, NTT, and TS time series will be difficult to forecast with
high precision, as they do not contain any observable pattern.

B. ARIMA

We estimated the ARIMA(p, d, q) according to the method-
ology described in Section IV. The estimated parameters are
presented in Table II.

TABLE II: ARIMA Models Settings

QoS Attribute SERV-1 SERV-2
5 min 1 h 5 min 1 h

Number of concurrent users (USR) (2,0,0) (2,0,0) (2,0,0) (2,0,0)
Response time - avg (ART-avg) (2,1,0) (1,0,0) (1,0,0) (1,0,0)
Response time - p99 (ART-p99) (1,1,0) (2,1,0) (0,0,1) (1,0,0)
Transaction count (TC) (3,0,0) (2,0,0) (4,0,0) (3,0,0)
Network transport time (NTT) (2,1,0) (1,1,0) (0,0,1) (1,0,0)
Transport size (TS) (3,0,0) (2,0,0) (3,0,0) (3,0,0)

We observe that USR, TC, and TS time series pass the
stationarity test and no differencing is necessary for both moni-
tored services. One order differencing was necessary for other
time series to fulfill the stationarity. Further, our estimation
shows, that the autoregressive part (AR) of the ARIMA model
is sufficient in the majority time series to describe a time series.
This fact is given by an ability of AR to capture the anomalies
presented in time series. In several cases, the applied Box-
Jenkins methodology suggested the MA model. The automated
testing of other ARIMA parameters combinations showed
better AIC results for AR model, though, due to anomalies
presented in the time series.

C. Holt-Winters

The Holt-Winters model required to identify seasonality
and the season length. The decomposition of the time series
showed a clear additive pattern in seasonality present in
the time series. Hence, we trained the additive Holt-Winters
model. As described above, USR and TC time series contains
both day-night and working day-weekend seasonality.

We set the season length for one week, as this period
covers both seasonality. If we set seasonality to one day, the
weekend seasonality would not be reflected, and the prediction
performance would decrease.

The maximum likelihood estimation of the model’s param-
eters confirmed the seasonality presented in USR and TC
time series. The γ parameters were non-zero, and the model
accented the recent observations at time series. The beta
parameters were zero for all time series as there is no trend
present in the time series. The estimation α parameter varied
from 0.05 to 0.99 over all time series.
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D. LSTM Neural Networks

For the LSTM NN, we need to set a number of LSTM cells
in the hidden layer and the maximum number of iteration for
backpropagation process. Based on our experience, we include
two LSTM cells into the NN. Our experience shows that a
higher number of the cells increases the forecast performance
only incrementally while the time needed to fit the model
increases significantly.

We derived the maximum number of iterations using learn-
ing rate curves of the NN. The learning rates of the NNs for the
selected time series are presented in Figure 3. In general, the
learning rates of ART, NTT, and TS time series drop rapidly
to zero after two iterations. The USR and TC time series
with one-hour granularity show only minor improvement in
learning after 21 iterations. The learning curve of USR and TC
time series with five-minute granularity has a linear decreasing
trend.

Based on the above analysis, we set the maximum number
of iterations to 100, which allows an optimal fit of NN for
the majority of the time series, on the one hand, and does
not increase the time needed for the model fit beyond the
reasonable amount, on the other hand. We set the same values
for the number of cells and the number iterations for all models
to be able to compare the model forecast performances.

VI. EXPERIMENT RESULTS

We use the fitted model for the one-step continuous forecast
on the testing dataset and evaluate the forecast accuracy using
MAPE as described above. The results of our evaluation are
presented in Table III. The best forecast accuracy for five-
minute granularity is highlighted in bold and for one-hour
granularity in italics.

The LSTM NN outperforms other methods mainly in fore-
cast accuracy of time series with high granularity. Given the
minute granularity, the LSTM NN show the best forecasting
accuracy in 58.3% of time series. Given the one hour granu-
larity, the LSTM NN surpass other methods in 50% of time
series. The Holt-Winters shows the weakest performance. The
ARIMA model is comparable with LSTM NN in the prediction
of time series with one-hour granularity.

LSTM NN shows the best performance for five-minute
USR and ART-avg time series. The forecast of these time



TABLE III: Mean Absolute Percentage Error for QoS Attributes Forecast

QoS Attribute Service
ARIMA Holt-Winters LSTM NN

5 min 1 h 5 min 1 h 5 min 1 h

Number of concurrent users (USR) SERV-1 7.79 13.70 28.09 38.89 2.16 20.27
SERV-2 5.44 10.02 24.41 32.11 1.61 20.84

Response time - avg (ART-avg) SERV-1 119.04 113.01 212.61 141.45 100.99 116.52
SERV-2 103.44 41.24 66.48 45.08 40.39 30.87

Response time - p99 (ART-p99) SERV-1 250.42 110.83 504.83 195.52 497.23 153.43
SERV-2 205.54 84.62 165.77 126.70 106.58 71.70

Transaction count (TC) SERV-1 76.28 50.80 310.98 272.62 252.68 119.89
SERV-2 36.23 28.75 226.91 198.95 28.07 11.40

Network transport time (NTT) SERV-1 288.63 96.53 238.26 99.16 460.22 69.96
SERV-2 374.92 81.40 394.67 96.04 409.73 34.31

Transport size (TS) SERV-1 46.82 25.99 51.79 160.12 46.40 39.72
SERV-2 112.90 48.84 210.06 154.127 386.56 35.73

series with one-hour granularity is dominated by ARIMA
forecasting model. We recall that USR time series shows a
diurnal pattern and the RT-avg is a smoothed time series. The
one-hour granularity of these time series generates a smooth
enough time series so that ARIMA can capture the time series
behavior. However, when the granularity of these time series
increases to five minutes, the time series become more volatile.
In this case, LSTM NN can better learn the time series model
despite the increased volatility.

The values of MAPE varies from 1.61 to 504.83. The lowest
MAPE is achieved from five-minute USR and TC time series.
The high values of MAPE in ART-p99 time series is caused
by the presence of several outliers in the testing dataset, which
increases the error mean.

The measurement of time needed to fit a model highlights
the complexity of LSTM NN. The overall results are presented
in Table IV. The fitting time measured for five minute gran-
ularity time series is naturally higher than the one-hour time
series as more observation needs to be fitted. The increase
of time needed to fit Holt-Winters and LSTM NN models
at five-minute time series compared to one-hour time series
is proportional to the increase in the number of observation
needed to fit. The ARIMA model shows an overhead when
fitting more observation points.

The Holt-Winters method shows the fastest model con-
struction as the model is constructed using only maximum
likelihood estimation compared to ARIMA where additional
optimization techniques are present. Surprisingly, LSTM NN
model is fitted faster than ARIMA model in five-minute
granularity. We explain this result by the employment of two-
step optimization used during ARIMA fit.

VII. DISCUSSION

In this section, we discuss several aspects of the application
of LSTM NN in our comparison. We inspect the selection of
the initial weights for LSTM NN closely, look into the evalu-

TABLE IV: Model Estimation Duration (s)

Granularity ARIMA Holt-Winters LSTM NN

5 minutes 574.56± 509.06 44.04± 4.17 397.48± 43.63
1 hour 30.21± 30.42 2.92± 0.82 33.70± 1.61

ation metric, and investigate possibilities of the improvement
of LSTM NN speed and accuracy.

The value of MAPE for LSTM NN is influenced by the
configuration of the initial weights. According to the described
methodology, we set the initial weights at random. Hence,
we investigated the influence of the random initial weights
of LSTM NN on the values of MAPE to capture a possible
bias introduced to our experiment. We ran LSTM NN forecast
twenty-times with random initial weights and computed the
MAPE distribution. Sample MAPE distribution is presented in
Figure 4. On average, the variability of the MAPE is 12% of
its mean value. Nevertheless, even if we include this bias in the
comparison of LSTM NN with other methods, the method’s
ranking holds.

As stated above, the high values of the MAPE for NTT
time series are caused by the outliers in the observations.
To omit the influence of the outliers to forecast accuracy,
we try to use an alternative metrics for forecast accuracy
evaluation called Symmetric Mean Absolute Percentage Error
SMAPE = 100

n

∑n
t=1

|ŷt−yt|
(|ŷt|+|yt|)/2 that is better protected

against outliers than MAPE. Using SMAPE, the error of NTT
decreased from 460.22 to 90.98 in LSTM NN forecast.

Last, we investigated the possibilities of improvement of the
fitting procedure of the LSTM NN. A substantial portion of
time during a LSTM NN fit is consumed by LSTM optimizer
searching for the minimum of the loss function. Similarly, the
forecast accuracy is dependent on the optimizer performance.
SGD optimizer that we used in our experiment does show slow
progress towards a minimum [21]. The authors of [21] suggest
that implementation of Adam or RMSProp optimizer would
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Fig. 4: LSTM NN – MAPE variability

increase the speed of minimization and the overall forecast
performance of LSTM NN.

The MAPE values demonstrate the suitability of the various
QoS attributes for forecasting. The MAPE values for NTT and
ART-p99 are too high to be used for WSs recommendation
based on QoS prediction. Number of the concurrent users
is an attribute that can be predicted with high probability.
Average response time varies by the type of service. Note,
that the data were not preprocessed in any way. Having the
data preprocessed (e.g. log transformation), we could possible
have achieved lower error rates.

VIII. RELATED WORK

Suitability of various time series analysis methods for QoS
prediction has already been surveyed in literature. Cavallo et
al. [22] provided an empirical comparison of several methods
for one-step-ahead prediction of QoS attribute, including a
naive approach based on current value, average, linear pre-
diction, and ARIMA. The compared methods were evaluated
on a dataset that captured QoS attributes for ten services. This
dataset was later used by Syu et al. in even more extensive
comparisons of time series analysis methods for QoS forecast-
ing [2, 23]. The authors compared all major approaches to time
series forecasting, including regression, ARIMA, exponential
smoothing, GARCH models, neural networks and genetic
programming methods. The authors concluded that there is
no single most suitable method for dynamic QoS forecasting.
For the highest accuracy of the forecast, they recommend the
genetic programming method, for quick prediction, the naive
method is suggested. The LSTM NN were not mentioned in
any of these surveys, though.

Apart from surveys, several improvements of existing time
series forecasting methods have been suggested to improve
QoS forecast accuracy. Wang et al. [24] proposed to use
a spatial-temporal QoS prediction used for WSs recommen-
dation. Geolocation of a WSs was employed to reduce the
number of candidate WSs and to improve the forecasting
accuracy. Amin et al. [4] used a forecasting approach based
on the combination of ARIMA and GARCH model that was
able to capture the QoS attribute’s volatility and improve
the accuracy of the forecast. The authors also investigated

the automated approach to QoS forecasting in [25]. A linear
and non-linear modeling methods were used to create models
for QoS prediction automatically, without human intervention.
For this use-case, their approach improved the forecasting
accuracy on by average 35 %. Zhu et al. [5] employed an
adaptive matrix factorization to perform online QoS prediction
for candidate services for runtime service adaptation. They
evaluated their approach regarding accuracy, efficiency, and
robustness. Further, Li et al. successfully used Holt-Winters
model to forecast web pages views in [10].

We identified a few publications that already used neural
networks for QoS predictions. Senivongse et al. [26] used
artificial neural networks for QoS prediction that assist the
service composition with optimal overall QoS. Zadeh and
Seyyedi [27] leveraged feed-forward NN with sigmoid activa-
tion function for QoS forecasting. They reported a wide MSE
range from 572 to 2393372. The approach was not compared
with any other time series prediction methods, though. Ben-
driss et al. [28] used RNN for service level objectives breaches.

IX. CONCLUSIONS

This paper displays an experimental application of Long
Short-Term Memory Neural Networks in the QoS forecast
domain. We present a performance comparison of LSTM NN
with two commonly used time series forecasting methods
ARIMA and Holt-Winters on a task of QoS prediction. The
performance of the forecasting method is compared from two
viewpoints - the forecasting accuracy and the time cost.

The forecasting methods are evaluated on the real-world
dataset of QoS attributes that was captured using a central-
ized passive QoS measurement technique. The results of the
evaluation reveal that LSTM NN gives improved forecasting
accuracy for the majority of the QoS attributes with higher
granularity compared to other methods. The time cost of the
LSTM NN is comparable with ARIMA model. To make our
research reproducible, we make our comparison, including
datasets, available for the public at [7].

Further, we discuss the possibilities of the improvement of
LSTM NN performance by altering the used optimizer. We
also inspect the influence of the choice of initial weights
of LSTM NN to the forecast accuracy and discussed the
characteristics of metrics used for performance comparison.
The optimization of the LSTM NN performance and the k-
step prediction for global web services QoS are interesting
topics for the future research.
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