Quality of Service Forecasting with LSTM Neural Network

International Symposium on Integrated Network Management (IM 2019) May 11, 2019

Tomas Jirsik, Stepan Trcka, Pavel Celeda Institute of Computer Science, Masaryk University, Brno

Quality of Service Forecasting

what is it good for?

Quality of Service

- Abstract term used for comparing services
- Derived from measurable QoS attributes
- QoS Attributes
 - Application response time
 - Network response time

Applications

Recommending systems for Web Pages

Forecasting

Updates from service providers are sparse

Challenges

what do we research

How can be QoS attributes collected?

Increase the frequency of the QoS attributes updates

How can we use Long Short-Term Memory Neural Network for QoS forecasting?

How to create LSTM NN model?

What method should we use for QoS attribute forecasting?

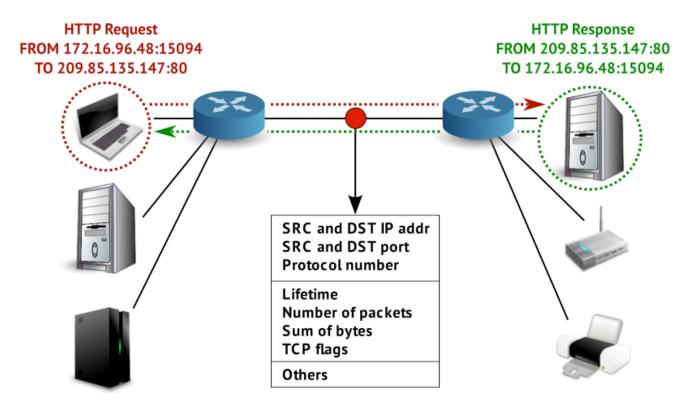
- Forecast precision
- Estimation time

Centralized QoS Attribute Collection

how to collect up-to-date data

IP flow network monitoring

Passive approach to network traffic observation



Centralized QoS Attribute Collection

how to collect up-to-date data

Next-generation IP flow network monitoring

- Bi-flows
- Application layer information

IP flow monitoring for QoS Attributes collection

- Attributes
 - Round trip time
 - Number peers/users
 - Transport size
 - Application response time
- Passive, continuous observation
 - Observation point location makes the difference

Evaluated Forecasting Methods

three approaches to time series forecasting

ARIMA(p,d,q)

autoregression and moving average in one package

Auto-Regression

• evolving variable of interest is regressed on its own lagged (i.e., prior) values

Moving Average

 regression error is a linear combination of error terms whose values occurred at various times in the past

Integrated

transformation applied to timeseries in order to make it stationary

$$(1-\phi_1B-\cdots-\phi_pB^p)(1-B)^d y_t = c+(1+\theta_1B+\cdots+\theta_qB^q)\varepsilon_t$$

Holt-Winters

seasonality included

Model

$$L_{t} = \alpha(y_{t} - I_{t-p}) + (1 - \alpha)(L_{t-1} + T_{t-1})$$
$$T_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}$$
$$I_{t} = \gamma(y_{t} - L_{t-1} - T_{t-1}) + (1 - \gamma)I_{t-p}$$

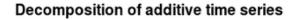
Prediction

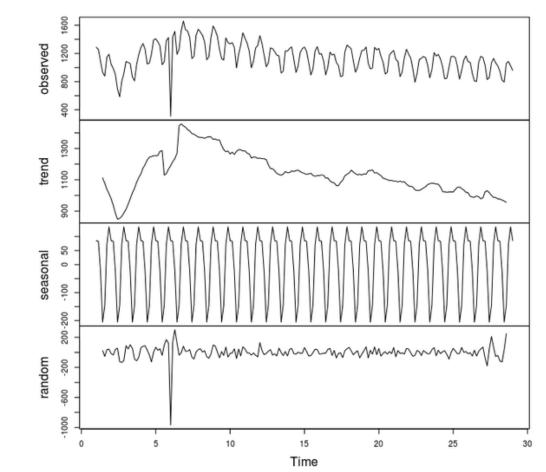
$$\hat{y}_t(k) = L_t + kT_t + I_{t-p+1+(k-1)modL}$$

Parameters

Speed of learning/forgetting

IM 2019: Quality of Service Forecasting with LSTM Neural Network *Jirsik et al., Institute of Computer Science, Masaryk University, Brno*



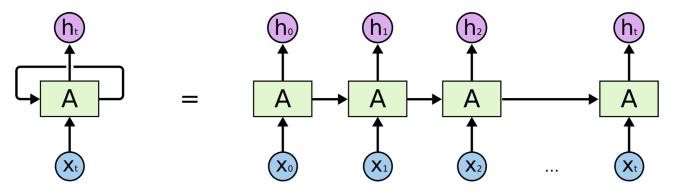


Long Short Term Memory Neural Network

recurrent neural network

Recurrent Neural Networks

- Text processing understanding of the words based on the meaning of the previous ones.
- Classification events in the movie previous events are necessary for reasoning
- Excellent for modelling sequences

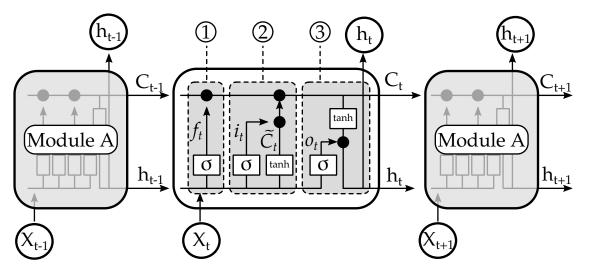


Long Short Term Memory Neural Network

recurrent neural network

Long Short Term Memory

- the context is more "far" in history
- specific function to determine what to remember
- gates
 - Forget
 - Input
 - Output



IM 2019: Quality of Service Forecasting with LSTM Neural Network Jirsik et al., Institute of Computer Science, Masaryk University, Brno

Methodology how do we make the comparison

Dataset

real-world data shows the real performance

Two monitored services

- Access portal to information resources at university (libraries, datasets collections, ...)
- Web presentation of the Faculty of Science

Observation period

• one month in 2018

Two granularities

- 5 minute => 8928 observations
- 1 hour => 744 observation

Missing values

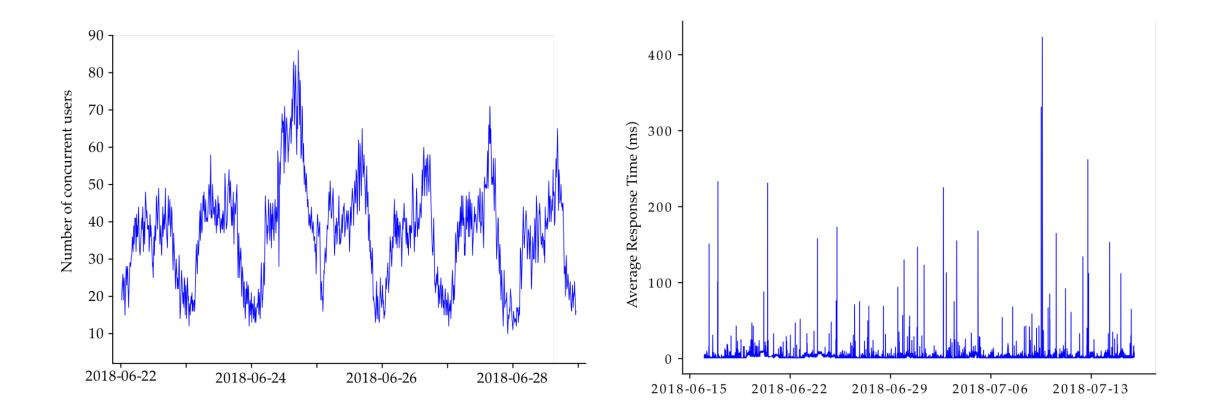
Dataset

real-world data shows the real performance

QoS Attribute	Measured Statistics		
Number of concurrent users (USR)	count		
Application response time (s) (ART)	min, max, avg , p50, p90, p99		
Transaction count (TC)	count		
Network transport time (s) (NTT)	min, max, avg , sum		
Transport size (s) (TS)	min, max, avg, sum		

Dataset

real-world data shows the real performance



Forecast

there is not only one forecast

Time scale

- Real-time
- Short-term
- Middle-term
- Long-term

Number of forecasted observations

- One-step
- Multi-step

Forecast frequency

- One-time
- Continuous

Our goal

One step, continuous, real-time/short-term

Models Construction

our approach to estimation

ARIMA(p,d,q)

- Box-Jenkins Methodology
 - Differencing order (Augmented Dickey-Fuller test for stationarity)
 - Autocorrelation plot to determine p,q (AIC if is unclear)
 - Maximum likelihood and Kalman Filter estimation

Holt-winters

- Additive vs multiplicative
- Season length identification (ACF, PACF)
- Parameters estimation (Maximum likelihood)

LSTM NN

- Standardization of time series
- One input, one hidden, one output layer
- MSE stop loss function
- Stochastic gradient descent optimizer
- Number of iteration determined from learning curve

IM 2019: Quality of Service Forecasting with LSTM Neural Network *Jirsik Cermak et al., Institute of Computer Science, Masaryk University, Brno*

Models Evaluation

how do we compare

Training and testing dataset

Forecast Precision

Mean Absolute Percentage Error

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{y_t - \hat{y}_t}{y_t} \right| * 100$$

Time complexity

- Time to estimate a model
- 6 AMD Ryzen5 CPUs 3.8GHz, 6GB RAM

Experiment Results

the data reveals the truth

Models Settings

given by the dataset

ARIMA

QoS Attribute	SERV-1	SERV-2
	5 min 1 h	5 min 1 h
Number of concurrent users (USR)	(2,0,0) (2,0,0)	(2,0,0) (2,0,0)
Response time - avg (ART-avg)	(2,1,0) (1,0,0)	(1,0,0) $(1,0,0)$
Response time - p99 (ART-p99)	(1,1,0) (2,1,0)	(0,0,1) $(1,0,0)$
Transaction count (TC)	(3,0,0) (2,0,0)	(4,0,0) (3,0,0)
Network transport time (NTT)	(2,1,0) (1,1,0)	(0,0,1) (1,0,0)
Transport size (TS)	(3,0,0) (2,0,0)	(3,0,0) (3,0,0)

Holt-Winters

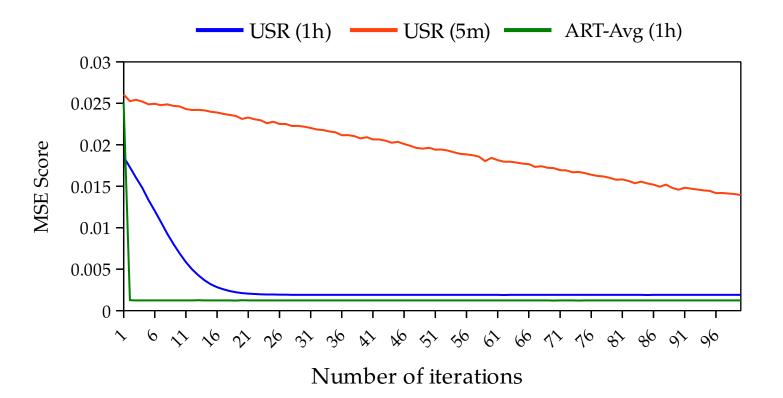
- USR, TC day-night, week pattern
- Season set to 7 days
- Parameter estimation
 - Level varied over whole interval
 - Trend no trend identified
 - Season close to one recent more weight

Models Settings

given by the dataset

LSTM NN

- Two hidden cells
- Number of iterations
 - ART, NTT, TS rapid drop
 - USR, TC 1 hour
 - Other linear descend
 - Set to 100



Models Comparison

MAPE performance

Oos Attribute	Service	ARIMA		Holt-Winters		LSTM NN	
QoS Attribute		5 min	1 h	5 min	1 h	5 min	1 h
Number of concurrent users (USR)	SERV-1	7.79	13.70	28.09	38.89	2.16	20.27
	SERV-2	5.44	10.02	24.41	32.11	1.61	20.84
Response time - avg (ART-avg)	SERV-1	119.04	113.01	212.61	141.45	100.99	116.52
	SERV-2	103.44	41.24	66.48	45.08	40.39	30.87
Response time - p99 (ART-p99)	SERV-1	250.42	110.83	504.83	195.52	497.23	153.43
	SERV-2	205.54	84.62	165.77	126.70	106.58	71.70
Transaction count (TC)	SERV-1	76.28	50.80	310.98	272.62	252.68	119.89
	SERV-2	36.23	28.75	226.91	198.95	28.07	11.40
Network transport time (NTT)	SERV-1	288.63	96.53	238.26	99.16	460.22	69.96
	SERV-2	374.92	81.40	394.67	96.04	409.73	34.31
Transport size (TS)	SERV-1	46.82	25.99	51.79	160.12	46.40	39.72
	SERV-2	112.90	48.84	210.06	154.127	386.56	35.73

IM 2019: Quality of Service Forecasting with LSTM Neural Network

Jirsik Cermak et al., Institute of Computer Science, Masaryk University, Brno

Time Complexity

how long does it take

Granularity	ARIMA	Holt-Winters	LSTM NN
5 minutes	574.56 ± 509.06	44.04 ± 4.17	397.48 ± 43.63
1 hour	30.21 ± 30.42	2.92 ± 0.82	33.70 ± 1.61

Further Notes

what can be improved

Initial weights for LSTM NN

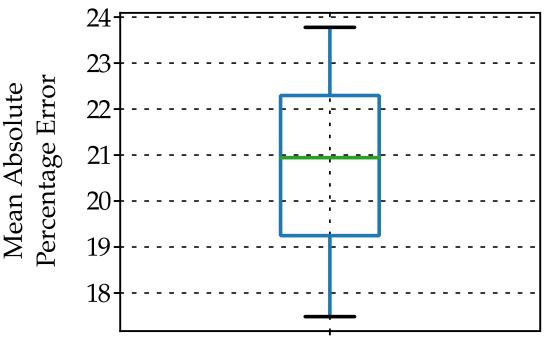
Outliers present

 Use Symmetric Mean Absolute Percentage Error instead MAPE

LSTM Time complexity

Adam or RMSProp optimizer instead SGD

Data preprocessing



Number of concurrent users (*SRV-2, 1hour granularity*)

Summary and future work

Centralized monitoring of QoS

Comparison of methods for QoS timeseries forecasting

- ARIMA vs. Holt-winters vs. LSTM NN
- LSTM NN better for high granular data
- Dataset and experiment released for public

Future work

- K-step prediction
- Optimization of LSTM NN performance
- Data preprocessing

IM 2019: Quality of Service Forecasting with LSTM Neural Network *Jirsik Cermak et al., Institute of Computer Science, Masaryk University, Brno*

An evaluation of QoS forecast methods described in paper Quality of Service Forecasting with LSTM Neural Networks

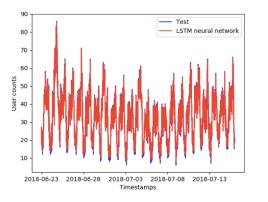
17 commits) 17 commits 🕴 1 branch 🛇 0 r		2 contributors	ېل MIT		
Branch: master - New pull request			Find	File Clone or download -		
Tempirsa Update README.md			Latest co	ommit 259d1ae on 7 Dec 2018		
in analyses	SERV removing Psyp			7 months ago		
datasets	Update README.md			4 months ago		
gitignore IJCENSE	gitignore Initial commit			7 months ago 7 months ago		
README.md	Update README.md			4 months ago		

Plot predicted values

publication

```
fig = ma.figure(plot_without_waiting.figure_counter) =
ma.plot(test values_scaled, color="blue", label="Test")
ma.plot(predicted_values_scaled, color="red", label="LSTM neural network")
ts_len = len(ts)
date_offset_indices = ts_len // 6
ma.xticks(range(0, ts_len-train_data_length, date_offset_indices), [x.date().strftime('%Y-%m-%d')
for x in dates[train_data_length::date_offset_indices]])
ma.xlabel("Imestamps')
ma.legend(loc='best')
fig.show()
```

<IPython.core.display.Javascript object>



Thank you for your attention

https://csirt.muni.cz/
 https://github.com/CSIRT-MU/QoSForecastLSTM
 Tomas Jirsik et al.
 @csirtmu

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

