CURRENT ISSUES OF MALICIOUSDOMAINS BLOCKING

Tuesday 9th April, 2019
Introduction

Malicious Domains

- Attackers may register their own domains
- May host phishing websites or distribute malware
- Using the DNS provides attackers with:
 - Trustworthy links
 - A way to avoid IP firewalls

DNS Firewall

- A "clever" resolver
- Checks its domain blacklist before forwarding DNS query
Technology

DNS Response Policy Zones
- The only open standard for DNS Fireall up-to-date
- Integrated into BIND and Windows Server 2016
- Provides only the resolver-side support

Proprietary Technologies
- Commercial application of the DNS Firewall, often as a service
- A lot of providers – Infoblox, FarsightSecurity, SpamHaus
CSIRT Requirements

1. Functions Integration
2. Logging
3. Blacklist Sharing
4. User Education
CSIRT Requirements – Integration

1. Functions Integration
 - Manage the DNS FW operation through a GUI
 - Integrate the GUI along other cybersecurity tools
CSIRT Requirements – Logging

2. Logging

- **User Data**
 - Generated as the DNS queries hit the DNS FW blacklist
 - Analysis may point incident handlers to an infected device

- **Management Data**
 - Generated as incident handlers manage the DNS FW
 - Allows keeping track of blacklist history
CSIRT Requirements – Sharing

3. Blacklist Sharing

- Blocking a domain after or during an attack may be too late
- Sharing blacklists between CSIRTs and other institutions allows for proactive domain blocking
4. User Education

- The DNS FW may redirect the connections instead of blocking them

- User is redirected on a safe landing page with the details about the incident

- It is a direct and immediate way to tell the user what just happened
Advanced DNS FW Model

Current Issues of Malicious Domains Blocking
Page 10 / 19
Implementation

- Based on the DNS Response Policy Zones standard
- Contains other modules to meet the CSIRT requirements
 - Integration - GUI in the currently used incident handling software
 - Logging - database backend with a visualization plugin
 - Sharing - supported by the DNS RPZ itself
 - Education - landing page with a report form
- Several open issues prevent implementing the "ideal" model
Open Issues

- Transition to HTTPs
- Blacklist Sharing
- Few Open Implementations
- Easy to Bypass
Open Issues

Transition to HTTPs

- Certificate check of the browser makes redirection impossible
- Breaks the direct way to inform the user about the incident
- Users can be contacted outside of the DNS Firewall
Open Issues

Blacklist Sharing

- Issue with the blacklist trustworthiness
- Blacklisting a harmless domain may cause severe disruption of institution’s services
- A serious issue if the feedback from users is not possible
Open Issues

Few Open Implementations

- The DNS Response Policy Zones is the only open standard
- Every institution has to develop its own service backend
Open Issues

Easy to Bypass

- The DNS resolver is easy to change in open network
- More significant issue if the firewall is used to enforce a policy
- In some cases may be mitigated by exerting more control over the network
Current Results

- DNS Firewall is active on a campus network with around 43,000 devices
- The blacklist contains 135 domains manually added and known to be malicious
- Since November 2018, 10,230 incidents were detected, originating from 507 unique devices
Summary

- Our testing shows that DNS firewall is a concept that covers another possible hole in the security of a private network.

- There exists at least one open source technology for DNS FW implementation - DNS RPZ.

- The technology allows implementing the DNS FW itself, but cannot satisfy all the CSIRT requirements yet.
 - Integration
 - Logging
 - Sharing
 - Education
THANK YOU FOR YOUR ATTENTION

@csirtmu

Stanislav Špaček
spaceks@ics.muni.cz