J 2019

Chemical (C, N, S, black carbon, soot and char) and stable carbon isotope composition of street dusts from a major West African metropolis: Implications for source apportionment and exposure

BANDOWE, Benjamin A. Musa, Marian Asantewah NKANSAH, Sophia LEIMER, Daniela FISCHER, Gerhard LAMMEL et. al.

Basic information

Original name

Chemical (C, N, S, black carbon, soot and char) and stable carbon isotope composition of street dusts from a major West African metropolis: Implications for source apportionment and exposure

Authors

BANDOWE, Benjamin A. Musa (276 Germany), Marian Asantewah NKANSAH (288 Ghana), Sophia LEIMER (276 Germany), Daniela FISCHER (756 Switzerland), Gerhard LAMMEL (276 Germany, guarantor, belonging to the institution) and Yongming HAN (156 China)

Edition

Science of the Total Environment, Amsterdam, Elsevier Science, 2019, 0048-9697

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10511 Environmental sciences

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 6.551

RIV identification code

RIV/00216224:14310/19:00109134

Organization unit

Faculty of Science

UT WoS

000455034600142

Keywords in English

Carbon; Nitrogen; Sulphur; Urban pollution; Polycyclic aromatic compounds

Tags

Tags

International impact, Reviewed
Změněno: 16/3/2020 13:35, Mgr. Marie Šípková, DiS.

Abstract

V originále

Street dust is a major source of pollution and exposure of residents of West Africa to toxic chemicals. There is however, limited knowledge about the chemical composition and sources of street dust in urban areas of sub-Saharan Africa. The total carbon (TC), nitrogen (TN), sulfur (TS) and the stable carbon isotope ratios (delta C-13) contents of street dust sampled from 25 sites distributed across Kumasi (a metropolis in Ghana with a population of ca.2 million) were determined. In addition, black carbon (BC) and their subunits (soot and char) in these samples were also determined. The concentrations of TC, TN and TS in the dusts were 5-71 mg g(-1), 0.3-4.3 mg g(-1) and 0.2-1.4 mg g(-1), respectively. The concentrations of TC, TN and TS were higher than at the background site of the metropolis by a factor of 5.1 (range: 1.7-12), 3.9 (1.1-13) and 2.8 (0.7-5), respectively. The BC, char and soot concentrations in these samples averaged 1.6 mg g(-1) (0.13-4.4), 1.2 mg g(-1) (0.08-3.7) and 0.36 mg g(-1) (0.05-1.5), respectively. The concentrations of BC, char and soot in the street dust were higher than in the background location by factors of 5 (range: 0.8-13), 6 (0.7-17) and 3 (0.5-12), respectively. The TC, TN, TS, BC, soot and char concentrations were positively correlated with each other and with polycyclic aromatic compounds (PAHs, oxygenated PAHs and azaarenes from a previous study), indicating their common origin and fate. The delta C-13 values ranged from -27 to -24 [parts per thousand], with more polluted sites being more depleted in C-13. Based on the chemical composition of the street dusts, the 25 sites could be clustered into four groups by hierarchical cluster analysis which reflect areas of varying anthropogenic influence and, accordingly, exposure to hazardous chemicals.