C 2018

Forest Classification: Data-Analytical Experiments on Vertical Forest Layering and Flattened Data

MUCINA, Ladislav and Lubomír TICHÝ

Basic information

Original name

Forest Classification: Data-Analytical Experiments on Vertical Forest Layering and Flattened Data

Authors

MUCINA, Ladislav (40 Austria) and Lubomír TICHÝ (203 Czech Republic, belonging to the institution)

Edition

SWITZERLAND, Forest Classification: Data-Analytical Experiments on Vertical Forest Layering and Flattened Data, p. 47-57, 11 pp. Geobotany Studies, 2018

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG

Other information

Language

English

Type of outcome

Kapitola resp. kapitoly v odborné knize

Field of Study

10611 Plant sciences, botany

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

RIV identification code

RIV/00216224:14310/18:00101731

Organization unit

Faculty of Science

ISBN

978-3-319-67831-3

UT WoS

000435900500004

Keywords in English

DIGITAL ELEVATION MODELS; LAND COMPONENTS; CLASSIFICATION; FIDELITY; COMMUNITIES; UNITS

Tags

International impact, Reviewed
Změněno: 24/6/2022 11:08, Mgr. Marie Šípková, DiS.

Abstract

V originále

In this chapter, we test whether the structural completeness (data stratified into structural layers-tree, shrub, herbaceous, epiphytes) in species-rich subtropical forests impacts on classification outcome. We manipulated a well-structured (multi-layered) data set by successive removing structural layers. We have found that the herbaceous layer (E1) and the epiphytic synusia (E0) do not play an important role in classification of the subtropical forests. Besides obligatory sampling the tree layer, it appears that sampling the complete shrub layers (E2 alpha and E2 beta) layers is crucial, both for classification as well as for production of functional expert system.

Links

GA17-15168S, research and development project
Name: Expertní systémy nové generace pro klasifikaci vegetace v kontinentálním měřítku
Investor: Czech Science Foundation