2018
Non-abelian T-duality and Yang-Baxter deformations of Green-Schwarz strings
BORSATO, Riccardo a Jörgen Linus WULFFZákladní údaje
Originální název
Non-abelian T-duality and Yang-Baxter deformations of Green-Schwarz strings
Autoři
BORSATO, Riccardo (380 Itálie) a Jörgen Linus WULFF (752 Švédsko, garant, domácí)
Vydání
Journal of High Energy Physics, New York, SPRINGER, 2018, 1029-8479
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10303 Particles and field physics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 5.833
Kód RIV
RIV/00216224:14310/18:00106603
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000441224800002
EID Scopus
2-s2.0-85052124282
Klíčová slova anglicky
Sigma Models; String Duality; Superstrings and Heterotic Strings; Integrable Field Theories
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 3. 2019 12:50, doc. Jörgen Linus Wulff, M.Sc., Ph.D.
Anotace
V originále
We perform non-abelian T-duality for a generic Green-Schwarz string with respect to an isometry (super)group G, and we derive the transformation rules for the supergravity background fields. Specializing to G bosonic, or G fermionic but abelian, our results reproduce those available in the literature. We discuss also continuous deformations of the T-dual models, obtained by adding a closed B-field before the dualization. This idea can also be used to generate deformations of the original (un-dualized) model, when the 2-cocycle identified from the closed B is invertible. The latter construction is the natural generalization of the so-called Yang-Baxter deformations, based on solutions of the classical Yang-Baxter equation on the Lie algebra of G and originally constructed for group manifolds and (super)coset sigma models. We find that the deformed metric and B-field are obtained through a generalization of the map between open and closed strings that was used also in the discussion by Seiberg and Witten of non-commutative field theories. When applied to integrable sigma models these deformations preserve the integrability.