
Enabling SSH Protocol Visibility in Flow
Monitoring

Pavel Čeleda, Petr Velan, Benjamin Král
Institute of Computer Science

Masaryk University
Brno, Czech Republic

{celeda,velan,kral}@ics.muni.cz

Ondřej Kozák
Flowmon Networks a.s.
Brno, Czech Republic

ondrej.kozak@flowmon.com

Abstract—The network flow monitoring has evolved to collect
information beyond the network and transport layers, most
importantly the application layer information. This information is
used to improve network security and performance by enabling
more precise performance analysis and intrusion detection. In
this paper, we contribute to this effort by extending flow monitor-
ing with information from the SSH protocol. Firstly, we analyze
the SSH protocol to determine which information can be obtained
from the connection establishment phase. Based on the analysis,
we create an extension to our flow monitoring infrastructure
that allows obtaining the selected information. Lastly, we analyze
the SSH connections observed in the university campus network
and discuss the benefits of performing the detailed SSH protocol
analysis. We argue that with a precise recognition of login attempt
results it is possible to improve the detection of successful brute-
force password attacks. Moreover, we publish an anonymized
version of our dataset including the SSH specific information.

Index Terms—SSH, flow, monitoring, network, dataset

I. INTRODUCTION

The network flow monitoring [1] is being enhanced to ob-
serve and export application layer information. HTTP protocol
related fields are even defined as standard IPFIX entities [2].
Although the increasing usage of encryption hinders this
approach, it is possible to gain information even from the
encrypted traffic [3], [4]. This paper focuses on the analysis of
the Secure Shell (SSH) protocol [5], which is used for critical
tasks such as server management and data transfer. To the best
of our knowledge, this is the first work that studies the SSH
protocol in the context of network flow monitoring.

Our goal is to use information available during the unen-
crypted phase of the SSH protocol handshake to gain more
detailed knowledge about SSH connections. This information
can be used to improve network-based detection methods,
discover unintentional misconfiguration of the SSH service
and audit its security policies. To achieve this goal, we have
developed an extension for Flowmon probe [6] to monitor the
SSH protocol. This extension gathers information from the
SSH connection establishment phase and exports it using new
IPFIX information elements. This approach allows us to gain
the SSH protocol visibility even in large-scale networks.

We have deployed the SSH flow monitoring on the campus
network of the Masaryk University and collected flow data

for a month. We analyze the collected data and report on the
observed SSH protocol usage status. Moreover, we show that
the extended flow data can be used to detect irregular behavior
in SSH communication, such as an abnormally high number
of authentication attempts. The contribution of this paper is
threefold:

• Analysis of the SSH protocol, creation of SSH protocol
flow measurement using new IPFIX elements with infor-
mation from the SSH protocol.

• Deployment of SSH flow monitoring on a campus net-
work and analysis of the collected data.

• Publication of the collected (anonymized) dataset includ-
ing the SSH specific information.

The organization of the rest of this paper is as follows.
Section II discusses the state-of-the-art related to this work.
Section III describes the SSH protocol and investigates what
information can be extracted from the SSH protocol payload.
Section IV evaluates the prototype implementation of the SSH
flow monitoring and analyzes the data collected on our campus
network. Finally, Section V concludes the paper.

II. RELATED WORK

In recent years, SSH protocol has been studied extensively,
especially in relation to security. As SSH allows a user to
control and command a remote host, it is often targeted by
many attackers who are trying to gain access to the machine.
Most frequent of such attacks is a brute-force password attack.
However, since SSH communication is encrypted, it is not an
easy task to distinguish malicious traffic such as brute-force
attack from legitimate traffic.

There are many approaches to detecting attacks on SSH
and gaining insight into SSH communication. One of such
approaches is based on employing special infrastructure and
protocols to enable intrusion detection and deep packet inspec-
tion. For example, Sherry et al. [7] propose a system called
BlindBox which enables middle-box to monitor encrypted
traffic and once a malicious keyword appears in the data then
and only then the middle-box will decode the encrypted data
stream and perform deep packet inspection. This approach,
however, requires cooperation with the communicating parties.
Moreover, the infrastructure and proposed protocols make this
approach difficult and expensive to set up.978-3-903176-15-7 c© 2019 IFIP

569



Foroushani et al. [8] take a different approach. They propose
a method based on statistical analysis of packet data size and
timing. As both are available without decryption, there is no
need for special protocols. However, the downside of this
system is rather high false positive rate (around 15%) which
makes it impractical for real-life scenarios.

A similar approach is taken by Najafabadi et al. [9] who
proposed a way to extract features from aggregated network
flows such as the number of aggregated flows, average number
of packets per flow, or average sizes. The features are also
extractable without decryption and can be used by machine
learning algorithms to create various classification models.

Another approach using network flows is explored by
Hellemons et al. [10]. The method they proposed separates
the SSH brute-force attack into three phases and declares
several statistical thresholds for each phase. All connections
originating from one source that go through at least one of the
attack phases are identified as an SSH brute-force attack. This
method has been implemented as an intrusion detection system
plugin for NfSen. Moreover, the false positives and false
negatives rates were observed to be very low. This method
has been further improved by Hofstede et al. [11] to detect
successful compromises with near 100% accuracy.

However, none of these approaches analyze the SSH data
stream. Only the metadata from the data stream or aggregated
flow records is extracted and used for analysis. The metadata
is usually generic and does not reflect the specifics of SSH
protocol. Moreover, there is often none SSH protocol identi-
fication in place, and simply all traffic on TCP port 22 (well-
known port number for SSH protocol) is used for analysis.
An exception is the open source intrusion detection system
Bro [12], which implements the SSH protocol identification,
and is able to extract data from the SSH protocol that is
being transmitted during SSH handshake and encryption setup.
This way SSH traffic can be detected and identified across all
traffic, and other useful information can be extracted such as
encryption and MAC algorithms used in each SSH connection.
However, Bro is an intrusion detection system and does not
aim at monitoring of high-speed networks.

III. SSH PROTOCOL MONITORING

We have implemented SSH communication monitoring as
a software module for Flowmon probe [13], enabling us to
monitor SSH communication in large-scale networks. This
section begins with description of the essentials of SSH
communication setup. The data that can be extracted from SSH
communication in plain text is reviewed and our implemen-
tation of a module for Flowmon probe is described. Finally,
the approach to authentication analysis is outlined, detailing
identification of authentication process and outcome.

A. SSH Protocol

SSH is a stateful client-server protocol that consists of three
layers - a transport layer, a user authentication layer, and a
connection layer. When initiating the connection, the transport
layer sets up a secure communication channel on top of

TCP/IP. This channel provides integrity, confidentiality, server
authentication, and may provide data compression. After a
secure channel is established by the transport layer, client
authentication is handled by user authentication layer. Finally,
one or more SSH application communication channels are
established that may be used for various purposes such as
providing an interactive command line, port tunneling, or X11
forwarding.

The SSH connection setup can be seen at Figure 1. At the
very beginning of communication when the transport layer is
being set up, both sides send a handshake message containing
information about SSH protocol and software versions in use.

 

...

Client Server

Application data

Supported algorithms

Key exchange

SSH_MSG_NEWKEYS

Protocol version + software version

Request service "ssh-userauth"

Supported authentication methods

Authentication credentials

Authentication outcome

Plaintext

Encrypted

Fig. 1. SSH Transmission Setup.

After the handshake, both client and server inform the other
side about supported authentication, encryption, MAC, and
compression algorithms. Ten algorithm lists will be sent by
each side [14] altogether. The first algorithm in each of client’s
list that is supported by the server as well will be used by both
parties.

After the algorithm negotiation, a symmetrical encryption
key is set up using the negotiated key exchange algorithm.
Both parties will finish the encryption setup by sending a
SSH_MSG_NEWKEYS message, informing the other party that
the newly exchanged key will be used from now on. From this
moment all communication is being encrypted.

Once the connection is set up, the authentication layer
will perform user authentication. First of all, a list of sup-
ported authentication methods is sent by the server (such
as password, publickey). The client selects one of the
authentication methods offered by the server and sends its
name along with all relevant parameters. Server replies with
message signifying either successful authentication or failed
authentication attempt. However, all this communication is
encrypted and therefore cannot be easily read.

B. SSH Flow Monitoring
Since the first part of SSH transmission setup is transmitted

in plain text, the content may be freely read by a network
flow monitoring probe. Therefore, it is possible to extract
the following information from the communication before the
encryption setup is finished:

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions570



• Client and server SSH protocol version
• Client and server SSH software and version
• Algorithms supported by client and server

– Key exchange algorithms
– Server host key algorithms
– Symmetric encryption algorithms
– MAC (Message Authentication Code) algorithms
– Compression algorithms
– Communication languages

The SSH communication is identified across all traffic
regardless of the transport layer port number. The identification
is done by looking for a string SSH- at the beginning of
payload data in one of the first packets in each new network
flow, which is always present in the first message client sends
to the server to initiate SSH connection.

Once the SSH connection is identified, the detection method
goes through several phases, each for one message as it is
expected to be sent in order by client or server, as seen
in Figure 1. In each of the phases, appropriate data from
the message is extracted and saved to the appropriate record
in the probe’s flow cache. The algorithm lists which are
transmitted as strings in the SSH data stream are saved as
numerical identifiers in network flow to decrease the network
flow message size.

When the flow with SSH application information expires
due to active timeout, it is exported to the flow collector. The
new flow record that is created in its stead retains all the ap-
plication level information. Therefore, there are usually many
flows records with the SSH information for a single long-
lived SSH connection. However, when the flow expires due
to inactive timeout, the SSH information cannot be retained.
Therefore, when no packets are sent in the connection for an
interval longer than the inactive timeout set on the flow probe,
the rest of the flow records created from the same connection
cannot contain the SSH-specific information.

C. Client Authentication Analysis

The second part of SSH connection initialization, as seen in
Figure 1, is encrypted. However, compromise identification is
an important component of an authentication attack detection
system. Crucial part for compromise identification is the ability
to identify the outcome of each authentication attempt. This
way, a brute-force attack can be detected. Moreover, if one of
the authentication attempts is identified as successful, it can
be concluded that the victim device has been breached and
attack remediation process can be initiated.

As the message carrying authentication outcome informa-
tion is encrypted, it cannot be simply read by the intrusion
detection system. However, the structure, lenght, and content
of each of those two messages are different. As can be seen in
Figure 2, the message signifying a successful authentication
outcome does not carry any data apart from the message
ID. On the other hand, the authentication failure message
is embedded with a list of authentication methods that may
be used for further authentication attempts. In theory, this
list could be empty, but it has been observed that always

at least one authentication method will be provided by the
server. Because of this message length discrepancy, which is
also present after encryption, authentication outcome may be
identified.

...

...

Client

reply

Server

keyboard-interactiveusername50

prompt60

61

52

USERAUTH_REQUEST

USERAUTH_INFO_REQUEST

USERAUTH_INFO_RESPONSE

USERAUTH_SUCCESS

Fig. 2. SSH User Authentication - Example Of Keyboard-Interactive Method.

This approach could be prevented by appending another
message SSH_MSG_IGNORE, which must be ignored by the
other party. This way the overall length of each message
could be increased, efficiently erasing the message length
discrepancy that facilitates this approach to authentication
outcome identification. However, we have not detected any
protocol implementation which would use the ignore message
to counter this vulnerability.

Moreover, this approach is based on the prerequisite that the
SSH communication follows the standard order of messages
as seen in Figure 1 and in Figure 2 respectively. If the order
of messages is different or the connection is ended abruptly,
the detection method will fail to perform the authentication
analysis. However, the module for Flowmon probe we have
developed is able to identify the phase the SSH connection
was in and attaches this information, enabling us to identify
problematic SSH connection phases and investigate the cause
of the failure. Moreover, the method is able to detect and work
with retransmissions and out-of-order packets.

IV. EXPERIMENTAL EVALUATION

We have deployed the SSH flow monitoring at the perimeter
of the campus network of the Masaryk University. The flow
data was collected for the entire August 2018 and includes
basic flow records as well as flow records with SSH in-
formation. Since the percentage of SSH traffic containing
the application layer information is relatively small (only
0.36% of all TCP connections), the impact on the monitoring
performance is rather negligible. To confirm this assumption,
we have monitored the resources consumed by the SSH flow
monitoring and verified that there is no significant performance
hit in comparison to the flow monitoring that was deployed
already. Although the number of flows with ssh information
is small (0.12% of all flows), they represent 14.31% of total
observed traffic volume. This is probably due to a periodic
data synchronization using the SSH protocol.

Flows are usually split by an active or inactive timeout, as
described in Subsection III-B. This is particularly important

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions 571



for long-lived SSH connections that can be active for weeks
at a time. Therefore, we carefully differentiate between flows
and connections in this section. An SSH connection is usually
reported in multiple flow records. Moreover, all flows up to the
first inactive timeout contain the application layer information.

The rest of this section analyzes the captured SSH flows.
First, it reports on statistical properties such as non-standard
port numbers, client and server protocol and software versions,
and used key exchange algorithms. Second, a brief analysis
of SSH authentication attempts is performed. We show that
most of the unsuccessful authentication attempts are not part
of brute-force password attacks, as one might expect, but rather
a benign part of service infrastructure. Last, we provide a
description of the dataset created during the experiment.

A. SSH Protocol Statistics

The processing of SSH traffic is not limited to a specific
port; therefore, it is possible to observe SSH traffic on non-
standard ports. We have found that only 87.19% of SSH
connections use the standard port, i.e., port 22. Top 10 non-
standard ports account for more than 86% of the rest of the
connections. Perhaps surprisingly, port 80 is being used for
SSH traffic as well. This is probably done in order to avoid
overly restrictive firewall policies. The number of connections
for each of the top 10 non-standard ports is depicted in
Figure 3.

 0

 10

 20

 30

 40

2
2
2
2
2

5
4
5
4
5

2
2
2
2

9
2
2
4

2
2
3
3

7
1
7
6

4
0
0
0

8
0

6
0
0
2
2

1
0
1
2
8

F
lo

w
s 

(%
)

Fig. 3. Top 10 Non-Standard SSH Ports.

The SSH protocol can be observed in multiple versions.
SSH-2 was published as an IETF Internet Standard; however,
different versions were available much earlier. SSH-2 is in-
compatible with SSH-1; moreover, SSH-1 is not considered
to be secure and should be phased out. Nonetheless, there is
still a small number of clients and servers using the outdated
SSH-1 protocol, as shown in Table I.

TABLE I
SSH PROTOCOL VERSIONS.

Client Version % of Flows Server Version % of Flows

2.0 99.985 2.0 98,689
1.99 0.014 1.99 1,307
1.5 0.001 1.5 0,004
1.33 0.000 2. 0 0.000

98% of flows where client communicated using protocol
1.99 was generated by 3.2.9 SSH Secure Shell for Windows

client application. Client applications reporting protocol ver-
sion 1.99 on the server side are Cisco-1.25, Cisco-2.0 (86.4%)
and different versions of OpenSSH (12.9%). The rest of the
traffic is generated by a number of other clients, each with
only a tiny share.

We have also analyzed the different software versions ob-
served in the SSH traffic. First, we filtered out software with
less than 10 flows, since the version strings were meaningless,
probably randomly generated, and possibly part of some
network scan. The rest of the records were stripped of the
version number, and only the software names were aggregated.
The results for client and server software differ significantly.
Table II shows the top 10 most common client and server
software that was found in the dataset. The shown client
software represents 98.4% of total flows. The server software
is more diversified than the client software, and the top 10
represents only 94.1% of the total flows.

TABLE II
SSH SOFTWARE IMPLEMENTATIONS.

Client Software % of Flows Server Software % of Flows

OpenSSH 37.935 OpenSSH 91.827
libssh2 23.289 Cisco 1.680
check_ssh 18.107 libssh 0.238
libssh 10.016 dropbear 0.243
PuTTY 2.510 HomeSSH 0.020
Go 2.196 ROSSSH 0.033
paramiko 2.171 conker 0.032
WinSCP 1.022 mod_sftp 0.004
zabbix_agent 0.741 FlowSsh 0.012
Granados 0.331 Zyxel 0.001
nsssh2 0.057 Comware 0.003
FileZilla 0.007 CerberusFTPServer 0.000

Version numbers were stripped from software strings before aggregating.

We can see that the OpenSSH dominates both the client and
server software version. However, it is especially dominant on
the servers, which is not surprising given that it is the default
SSH implementation for virtually every GNU/Linux distribu-
tion. The client software is more balanced. The SSH protocol
is implemented in Windows software, such as WinSCP and
PuTTY. Moreover, SSH often needs to be called from within
scripting and programming languages and specific libraries,
such as paramiko, libssh, and libssh2, exist for this reason.
Server monitoring tools such as Zabbix and Nagios provide
their own clients for checking the SSH status as well.

Key exchange, data encryption, and MAC algorithms are
important security aspects of each SSH session. Tables III
and IV shows all key exchange and encryption algorithms that
were used for the observed connections. We can see elliptic
curve Diffie-Hellman key agreement is being used quite often
(45.7% of flows), the original Diffie-Hellman algorithm is
used only slightly more often (51.2%), and no key exchange
algorithm is used in the rest of the cases. Moreover, the use
of the deprecated SHA-1 algorithm in the key exchange phase
is only 12.2%.

The AES encryption algorithm variants are the dominant
algorithms used for encrypting the SSH transport layer. The

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions572



TABLE III
SSH KEY EXCHANGE ALGORITHMS.

Key Exchange Algorithm % of Flows

diffie-hellman-group-exchange-sha256 38.154
curve25519-sha256@libssh.org 20.617
curve25519-sha256 16.844
ecdh-sha2-nistp256 8.080
diffie-hellman-group14-sha1 6.723
diffie-hellman-group1-sha1 5.523
(null) 3.114
diffie-hellman-group-exchange-sha1 0.754
ecdh-sha2-nistp521 0.141
ecdh-sha2-nistp384 0.045
diffie-hellman-group16-sha512 0.004

most common is AES with keysize of 128 bits in counter
(CTR) mode. The other observed ciphers are chacha20, 3des,
arcfour, and blowfish. Out of these four, only the chacha20
has significant usage. The use of arcfour is not generally
encouraged, however, it might still be enabled due to its high
performance.

TABLE IV
SSH ENCRYPTION ALGORITHMS.

Algorithm % of Flows Algorithm % of Flows

aes128-ctr 66.454 aes256-cbc 0.306
chacha20-poly1305@* 23.000 3des-cbc 0.010
aes128-cbc 4.829 aes192-cbc 0.001
aes256-ctr 2.373 aes192-ctr 0.001
aes128-gcm@* 2.074 arcfour 0.001
(null) 0.592 blowfish-cbc 0.000
aes256-gcm@* 0.356 none 0.000

* . . . openssh.com implementation of the algorithm

OpenSSH version 7.8 was released during our experiment
on August 23. We have observed the use of this version on the
same day. This allows us to easily identify systems that are
regularly updated. Moreover, by observing client and server
software versions, we can perform or enhance fingerprinting
of operating systems. It also allows us to recognize network
devices from vendors with their own SSH daemon implemen-
tation, such as Cisco and Mikrotik.

B. Client Authentication Analysis

One of the most important information that can be extracted
from an SSH connection is how many login attempts were
performed and whether they were successful. Our data contain
this information for most of the flows where it is possible
to distinguish between successful and unsuccessful authen-
tication attempt. Most login attempts start with a query to
determine available authentication methods, which is not dis-
tinguishable from a regular authentication attempt. Therefore,
even if the use gives a valid password on the first try, it is
reported as two login attempts.

In some cases, the outcome of an authentication attempt
cannot be determined with absolute certainty. When this
happens, the flow record contains this information together
with the reason why the analysis failed. We analyze only
the successful and failed authentication attempts that were
reported with absolute certainty.

Figure 4 shows the number of observed authentication
attempts for both successful and failed login cases. We can
see that most successful authentications succeed on one of
the first three attempts. However, in some of the observed
cases as much as 13 login attempts were performed. Since
most SSH daemons refuse a connection after only a handful
of failed login attempts, we believe that the high numbers of
login attempts were caused by using SSH keys. When a user
adds multiple keys to her local SSH agent, all of them are tried
upon a new connection unless a concrete one is specified and
until a correct one is found.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
o

ta
l 

au
th

en
ti

ca
ti

o
n

 a
tt

em
p

ts

Successful login
Failed login

Fig. 4. Authentication Attempts per SSH Connection.

The high number of unsuccessful login attempts is not
caused by attackers and users that gave up after a single au-
thentication attempt. It is caused by periodic checks performed
by monitoring tools such as Zabbix and Nagios. Table V
shows client software of 99.7% of all flows that contained
zero authentication attempts and were not successful. We can
see that a third of the flows are caused by check_ssh module
of the Nagios monitoring system and that more than a half of
the connections were initiated by a software using the libssh
library. OpenSSH was used only in 3% of connections which
is a significant difference in comparison with Table II.

TABLE V
UNSUCCESSFUL SSH CLIENTS WITH 0 AUTHENTICATION ATTEMPTS.

Client Software % of Flows Client Software % of Flows

libssh2 39.746 Terminal 0.413
check_ssh 34.909 Granados 0.366
libssh 17.847 paramiko 0.340
OpenSSH 3.001 PuTTY 0.077
Go 1.603 WinSCP 0.017
zabbix_agent 1.429

Version numbers were stripped from software strings before aggregating.

C. Dataset Description

We have published the dataset [15] that was used in the
analysis in this paper. It contains flow records with SSH fields
for August 2018. The traffic was observed at the perimeter of
the Masaryk University campus network. To preserve privacy,
the IP addresses were anonymized using a salted SHA-256
hash function. SSH connections made using IPv4 and IPv6
are stored separately. This was done mostly to simplify the
processing and to allow separate analysis in the future. For

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions 573



example, IPv6 traffic is less likely to contain SSH scans. The
information contained in the dataset is described in Table VI.

TABLE VI
DATASET ELEMENTS.

Basic Flow Elements SSH Elements

Flow Start Timestamp SSH Client Version
Flow End Timestamp SSH Server Version
Source IP address (Anon.) SSH Client Application
Source Transport Port SSH Key Exchange Algorithm
Destination IP Address (Anon.) SSH Host Key
Destination Transport Port SSH Client Encryption Alg.
Transport Protocol SSH Server Encryption Alg.
Number of Packets SSH Client MAC Alg.
Number of Bytes SSH Server MAC Alg.
TCP Flags SSH Client Compression Alg.

SSH Server Compression Alg.
No. of Authentication Attempts
Authentication Attempts Result

V. CONCLUSIONS

In this paper, we have shown that information from SSH
traffic can be obtained using passive flow monitoring. Even
though SSH protocol encrypts its transport layer, much useful
information remains in its initialization phase that is valuable
for security purposes. Moreover, even though connection ini-
tialization is encrypted as well, it is possible to determine, in
most cases, whether an authentication attempt was successful
or not from the size of the SSH messages.

Apart from the analysis of the SSH protocol, we have
evaluated the SSH flow monitoring software on the real
campus network. We have shown how the extended flow data
could be used for SSH security management:

• Port usage – traditional flow data analysis tools rely on
port classification (SSH port 22). Some administrators
use different port numbers to hide SSH services (security
through obscurity). We perform deep packet inspection
to identify SSH usage on non-standard ports.

• Protocol versions – major SSH version in use is 2.0 today.
Other versions are suspicious (obsolete and insecure).

• Cryptography audit – SSH transport relies on multiple
algorithms to protect the communication. We provide vis-
ibility on used algorithms to perform compliance testing.
The measured data can be further used to fingerprint
clients and servers.

• Software implementations – software version string indi-
cates the name of the application and the capabilities of
an implementation. The measured data can be used to de-
tect vulnerable clients and servers using CVE (Common
Vulnerabilities and Exposures).

• Client authentication – SSH servers are the target of many
brute-force password attacks. Most detection methods re-
port on SSH connection attempts. Our proposed detection
method understands traffic even when it is encrypted and
reports on successful or failed login.

The dataset used for the evaluation of the SSH flow mon-
itoring was made publicly available at [15]. Therefore, our
analysis can be not only verified but also extended by other

researchers. We believe that a number of other interesting
observations can be derived from our data.

In our future work, we would like to leverage SSH flows
to perform client and server fingerprinting and clustering to
identify patterns in SSH communication of malicious users.
It may be that malicious users use software with distinct
parameters and implementation such as a unique combination
of advertised software version and encryption algorithms. The
data collected could be used as input for machine learning
methods to filter new connections based on the patterns
identified in previous malicious traffic.

ACKNOWLEDGMENT

This research was supported by the ERDF "CyberSecurity,
CyberCrime and Critical Information Infrastructures Center of
Excellence" (No. CZ.02.1.01/0.0/0.0/ 16_019/0000822).

REFERENCES

[1] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis with NetFlow and IPFIX,” Communications Surveys Tutorials,
IEEE, vol. 16, no. 4, pp. 2037–2064, 2014.

[2] Internet Assigned Numbers Authority. (2017, Sep.) IP Flow Information
Export (IPFIX) Entities. [Online]. Available: https://www.iana.org/
assignments/ipfix/ipfix.xhtml

[3] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A Survey of Methods
for Encrypted Traffic Classification and Analysis,” International Journal
of Network Management, vol. 25, no. 5, pp. 355–374, 2015.

[4] B. Anderson and D. McGrew, “Identifying Encrypted Malware Traffic
with Contextual Flow Data,” in Proceedings of the 2016 ACM Workshop
on Artificial Intelligence and Security, ser. AISec ’16. New York, NY,
USA: ACM, 2016, pp. 35–46.

[5] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture,” RFC 4251 (Proposed Standard), Internet Engineering Task
Force, Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4251.txt

[6] Flowmon Networks, “Flowmon Probe.” [Online]. Available: https:
//www.flowmon.com/en/products/flowmon/probe

[7] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep
Packet Inspection over Encrypted Traffic,” SIGCOMM Comput. Com-
mun. Rev., vol. 45, no. 4, pp. 213–226, Aug. 2015.

[8] V. A. Foroushani, F. Adibnia, and E. Hojati, “Intrusion Detection in
Encrypted Accesses with SSH Protocol to Network Public Servers,”
in 2008 International Conference on Computer and Communication
Engineering, May 2008, pp. 314–318.

[9] M. M. Najafabadi, T. M. Khoshgoftaar, C. Calvert, and C. Kemp, “De-
tection of SSH Brute Force Attacks Using Aggregated Netflow Data,”
in 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), Dec 2015, pp. 283–288.

[10] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras, “SSHCure: A Flow-Based SSH Intrusion Detection System,”
in Dependable Networks and Services, R. Sadre, J. Novotný, P. Čeleda,
M. Waldburger, and B. Stiller, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 86–97.

[11] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH Compromise
Detection Using NetFlow/IPFIX,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 5, pp. 20–26, Oct. 2014.

[12] J. Amann, J. Azoff, T. Fleury, V. Grigorescu, S. Hall, V. Paxson,
A. Sharma, J. Siwek, A. Slagell, R. Sommer, and et al., “The Bro
Network Security Monitor.” [Online]. Available: http://www.bro.org/

[13] O. Kozák, “Advanced SSH Traffic Analysis,” Master’s Thesis, Masaryk
University, Faculty of Informatics, Brno, May 2018. [Online]. Available:
https://is.muni.cz/th/uf67z/

[14] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Transport
Layer Protocol,” RFC 4253 (Proposed Standard), Internet Engineering
Task Force, Jan. 2006, updated by RFC 6668. [Online]. Available:
http://www.ietf.org/rfc/rfc4253.txt

[15] P. Čeleda, P. Velan, B. Král, and O. Kozák, “Dataset: Enabling SSH Pro-
tocol Visibility in Flow Monitoring,” http://dx.doi.org/10.5281/zenodo.
1412596, Sep. 2018.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions574


