APPLICATION-AWARE FLOW MONITORING

Thursday 11th April, 2019

Petr Velan

MUNI ICS

Motivation

Application-Aware Flow Monitoring Page 2 / 22

Basic Flow Monitoring

Flow monitoring is widely used for:

- Accounting
- Security (IDS, forensics)
- Data retention
- Network diagnostics

Basic flow record example:

Flow start	Duration	Proto	Src IP Addr:Port		Dst IP Addr:Port	Flags	Packets	Bytes
09:41:21.763	0.101	TCP	172.16.96.48:15094	->	209.85.135.147:80	.AP.SF	4	715
09:41:21.893	0.031	TCP	209.85.135.147:80	->	172.16.96.48:15094	.AP.SF	4	1594

Flow creation process is complex

- Flow vs. connection, fragmented traffic, flow termination conditions, flow keys from multiple layers
- ⇒ Definition of flow is necessary

Application-Aware Flow Monitoring Page 3 / 22

🛞 CSIRT-MU

Application Layer Information

Application visibility, such as provided by DPI, improves security and network diagnostics.

- Application identification (not relying on well-known ports)
- Encapsulating application protocols (HTTP used for audio/video streaming)
- Information about tunnels (e.g., MPLS, VLAN, IPv6 transition mechanisms)

Basic flow contains only selected information from packet headers.

- Gather more information available from the headers (L2 layer)
- Analyze application layer information (application identification and visibility)

Application flow record example:

Flow start L3,4 HTTP Host HTTP URL HTTP User Agent Rsp. Code 09:41:21.763 Vww.example.com /requested/endpoint 'Mozilla/5.0 AppleWebKit/531.21.10 200

Application-Aware Flow Monitoring Page 4 / 22

Growing Network Speeds

10 G, 25 G, 40 G and 100 G: Seeing Broad Adoption in Data Center

http://techblog.comsoc.org/tag/25-100g-ethernet/

Application-Aware Flow Monitoring Page 5 / 22

Growing Network Speeds

- Very short time to process individual packets
- Large number of concurrent flows increase memory utilization

	10 G		100 G		
	pps	CPU cycles*	pps	CPU cycles*	
Smallest frame size	14.88 M	201	148.81 M	20	
800 B packets	1.49 M	2011	14.92 M	201	

*On a 3 GHz CPU core

Multiple concepts must be combined:

- Multi-core and multi-processor systems
- Specialized NICs (FPGA-based)
- Software (user and kernel space) optimizations

Application-Aware Flow Monitoring Page 6 / 22

Traffic Encryption

Increasing amount of encrypted traffic (SSL/TLS, DTLS, IPsec, ...):

- Privacy becomes increasingly important
- Free certificates (Let's Encrypt)

DPI fails for encrypted traffic:

- No precise application identification (back to port numbers)
- No application layer visibility

Some information still available:

- Encryption protocol headers (e.g., certificates, ciphers)
- Statistical information ⇒ machine learning

Application-Aware Flow Monitoring Page 7 / 22

Thesis Goals

Propose application flow monitoring which utilises application layer information to facilitate flow analysis and threat detection.

Evaluate performance of flow monitoring and propose optimisations to facilitate monitoring of high-speed networks.

Analyse options for monitoring of encrypted traffic, survey common encryption protocols and methods for encrypted traffic classification.

Application-Aware Flow Monitoring Page 8 / 22

Application Flow Monitoring

Application-Aware Flow Monitoring Page 9 / 22

Flow Definition

IPFIX and NetFlow v9 flow definitions have a few shortcomings:

- Limited to IP flows
- Do not account for fragmented packets
- Unclear definition of packet characteristics

Proposed a new definition which addresses these problems:

A *flow* is defined as a sequence of packets passing an observation point in the network during a certain time interval. All packets that belong to a particular *flow* have a set of common properties derived from the data contained in the packet, previous packets of the same *flow*, and from the packet treatment at the observation point.

Formalization of the definition avoids misinterpretation.

Application-Aware Flow Monitoring Page 10 / 22

HTTP Parser Design

Parser Performance Comparison with Respect to HTTP Proportion (0% - No HTTP, 100% - Only HTTP Headers) in the Traffic - Full Packets 1500 B.

Application-Aware Flow Monitoring Page 11 / 22

Use of Application Information

Security monitoring of HTTP traffic:

- Classification of HTTP traffic
- Repeated requests (proxies and brute-force attacks)
- HTTP scans
- Web crawlers

IPv6 transition mechanisms:

- Teredo, protocol 41 (e.g., 6to4, 6in4), ISATAP, AYIYA
- Detection of tunnel endpoints
- Geolocation of endpoints, optimization of traffic routes
- Anomalies, misconfiguration (forwarding of local-link packets inside tunnels)
- OS fingerprinting

Application-Aware Flow Monitoring Page 12 / 22

Flow Monitoring Performance

Application-Aware Flow Monitoring Page 13 / 22

Flow Acceleration

Software acceleration		
Multithreading		
NUMA awareness		
Flow state in parsers		
Flow cache design		
Per-flow expiration timeout		
Delayed packet processing		
Bidirectional flow records		

Flow Acceleration Techniques (Novel Proposals).

Application-Aware Flow Monitoring Page 14 / 22

Novel Flow Acceleration Techniques

Packet header preprocessing:

- Extraction of information from packet headers by the NIC
- Only necessary information sent to software
- Minimizes data transfers, lowers utilization of memory controller

Application identification:

- Only small portion of packets carry important application protocol information
- Packets containing important headers can be identified by NIC

Flow state in parsers:

- Flows with application information are usually processed by only single parser
- Apply parsers from the most common to the least common one
- Skip application parsers after important information is extracted

Application-Aware Flow Monitoring Page 15 / 22

High-Density Flow Monitoring

Aggregate measurement of multiple 10 G links in a single box.

- 2 NICs (2x40 G ports configured as 8x10 G)
- Theoretical throughput: 160 Gbps
- Test impact of packet trimming and packet header preprocessing in NIC
- Different flow counts, packet sizes
- Test impact of CPU choice (6 vs 8 cores, 2 GHz vs 2.6 GHz)

Results:

- Line-rate is achievable for 128 B packets with hardware acceleration
- Impact of flow count is significant for short packet lengths
- Choice of CPU (especially frequency and number of cores) is very important

Application-Aware Flow Monitoring Page 16 / 22

Impact of Packet Trimming and Preprocessing

Packet Processing Performance Comparison in Packets/s for 16,384 Flows per Interface.

Application-Aware Flow Monitoring Page 17 / 22

Measurement of Encrypted Traffic

Application-Aware Flow Monitoring Page 18 / 22

Information Extraction From Encrypted Traffic

Some information remains disclosed even for encrypted traffic:

- Initialisation of the encrypted connection is usually unencrypted
- TLS up to version 1.3 discloses certificates
- SNI still available, but propositions are being made to encrypt it
- Combination with DNS monitoring is possible
- These information can be used directly by flow monitoring system
- Information about offered cryptographic algorithms can be used to fingerprint clients

Encrypted Traffic Classification

Identification of encrypted protocols is not always possible.

- Machine learning and statistical methods can be used
- Surveyed works published in the top related conferences and journals from 2004 to 2015

Payload-based classification techniques:

- Mostly ready-to use tools
- Utilized in practice for DPI

Feature-based classification techniques:

- Intensive research area
- Most authors use private datasets
- Incomparable results

Application-Aware Flow Monitoring Page 20 / 22

Future Work

Application-Aware Flow Monitoring Page 21 / 22

Concepts for Next Generation Flow Monitoring

EventFlow

- Group flows based on actions
- Proof of concept implemented on HTTP and DNS protocols

MetaFlow

- Hierarchical structure for flows
- Useful for monitoring of layered traffic
- Helps to reduce number of flow data templates

Application Events

- Similar to MetaFlow
- Do not create application flows (can disrupt basic flow creation process)
- Attach application information to basic flow in separate record

Application-Aware Flow Monitoring Page 22 / 22

THANK YOU FOR YOUR ATTENTION!

https://is.muni.cz/th/a2fxd/@csirtmu

Petr Velan velan@ics.muni.cz

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

