
Normalization of Unstructured Log Data into
Streams of Structured Event Objects

Daniel Tovarňák, Tomáš Pitner

Masaryk University
CSIRT-MU, FI MU

April 11, 2019

IM 2019 › Motivation 1 of 27

Motivation

IM 2019 › Motivation 2 of 27

Log Analysis via Complex Event Processing (CEP)

Data stream processing: real-time data processing paradigm
▶ commonly used to deal with high-velocity data

CEP: detection of complex patterns in streams of data elements
▶ visions for use in real-time log analysis, especially security monitoring
▶ as opposed to full-text indexing and column-based indexing of log data

Event objects: actual representation of the elements in the stream
▶ expected to be properly structured and described via an explicit data schema
▶ much like in RDBMS

Unstructured log entries , event objects
▶ semi-structured log entries , event objects

IM 2019 › Motivation 3 of 27

Logging and Log Data – 5Vs of Big Data

Traditional manifestation – log files with arbitrary text messages

Value: widely-used source of monitoring information
▶ debugging, troubleshooting, fault detection, security, forensics, compliance

Veracity: poor-quality, unstructured nature, complicated analysis
▶ 2017-07-23T19:35:45Z [0] ERR!: Jack said he will take care of this!
▶ this stems from the way logs are generated – messages in natural language

Variability: pervasive devel. practice spanning SW on all IT layers
▶ data source and data format heterogeneity

Velocity + Volume: can exceed 100,000 entries/sec, 1 MB/s per node
▶ HP company – 1 × 1012 entries/day generated, 3 × 109 entries/day processed

IM 2019 › Motivation 4 of 27

Bridging the Gap by Normalization

Data integration perspective: bridge the gap by normalization
▶ known pattern to improve interoperability
▶ missing structure is added via transformation and enrichment
▶ overall heterogeneity is eliminated thanks to a single canonical form

Normalization: unification of data on any of its 4 layers
▶ data structures
▶ data types
▶ data representation
▶ transport

Thesis Goal:
Improve the way log data can be represented and accessed by designing
[algorithms, approaches, concepts] that would enable the normalization of
unstructured log data into streams of event objects in order to allow the log
analysis practitioners to analyze them in a unified and interoperable manner.

IM 2019 › Motivation 5 of 27

Thesis Goal (Simplified)
Dec 03 2016 10:03:44 [147.251.11.100] --- INFO: User bob logged in
2016-12-03T10:03:45Z 147.251.20.110 sshd[1551]: session closed for user alice
Dec 03 2016 10:03:46 [147.251.10.125] --- WARN: User alice failed to log in
3.12.2016 10:03:47 147.251.19.160 [Super.java]: {service=Billing, status=0x2A}

↓ NORMALIZATION: 1 + 3 RESEARCH GOALS ↓

UserLogin() {ts=...424, host="147.251.11.100", success=True, user="bob"}
SessionClosed() {ts=...425, host="147.251.20.110", user="alice", app="sshd"}

UserLogin() {ts=...426, host="147.251.10.125", success=False, user="alice"}
ServiceCrash() {ts=...427, host="147.251.19.160", service="Billing", code=42}

⇓ UserLogin ⇓ ⇓ SessionClosed ⇓ ⇓ ServiceCrash ⇓

CREATE MAP SCHEMA UserLogin(host string, success boolean, user string);

SELECT host, user, count(*) AS attempts
FROM UserLogin.win:time(30 sec)
WHERE attempts > 1000, success=false
GROUP BY host, user

IM 2019 › Proactive Normalization 6 of 27

Proactive Normalization

IM 2019 › Proactive Normalization › Logging Mechanisms 7 of 27

Research Goal 1 – Key Findings

It is not overly hard to log semi-structured log messages (JSON)
▶ we have developed prototype mechanisms for Ruby, Python, C++11, and Java

It is hard to generate explicit data schemes describing them
▶ static code analysis at compile time had to be used for our 2 Java prototypes

Evaluation and profiling: 66% performance overhead per statement
▶ caused by data representation
▶ serialization + appending phase (twice the size ~ twice the time)

We do not expect massive use of structured logging in near future
▶ how do you convince someone to write ”clean code”?
▶ several studies suggest that the developers are unable to properly use even

traditional logging mechanisms based on string parameterization

IM 2019 › Reactive Normalization 8 of 27

Reactive Normalization

IM 2019 › Reactive Normalization › Log Abstraction 9 of 27

Log Abstraction (Separation)

Log Messages ⇒ Message Types ⇒ Regular Expressions

User Jack logged in

User John logged out

Service sshd started

User Bob logged in

Service httpd started

User Ruth logged out

User * logged * : [$1, $2]

Service * started : [$1]

User (\w+) logged (\w+)

Service (\w+) started

LOG.info("User {} logged {}", user, action);

↓
Dec 03 2016 10:03:44 -- INFO: User bob logged in

{
User (?<user>\w+) logged (?<action>\w+)

Log abstraction is a two-tier procedure:
▶ message type discovery
▶ pattern-matching via regular expressions

IM 2019 › Reactive Normalization › Message Type Discovery 10 of 27

Research Goal 2 – Message Type Discovery

Manual discovery: tiresome process, which leads to errors
▶ automated approaches are necessary

Static code analysis: perfectly possible
▶ we were able to discover approx. 4500 message types in Hadoop source code
▶ source code is not always available (e.g. for network devices)

Data mining: use already generated log messages (historical data)
▶ 9 existing approaches were studied, e.g. SLCT, IPLoM, logSig, N-V, …

Existing approaches: accuracy and usability issues
▶ e.g. message types overlap, hard fine-tuning, tokenization by single character

Our goal:
Design a message type discovery algorithm addressing these issues.

IM 2019 › Reactive Normalization › Message Type Discovery 11 of 27

Extended Nagappan-Vouk Algorithm

Service sshd started | [4,2,4]

Service httpd started | [4,2,4]

Service sshd started | [4,2,4]

Service httpd started | [4,2,4]

Service * started

1 2 3
Service 4 0 0
httpd 0 2 0
sshd 0 2 0

started 0 0 4

Method of n-th percentile: frequency table + percentile threshold
▶ [4,2,4] in example is log message score
▶ word is a variable, if it has a frequency lower than n-th percentile of score

Post-processing to improve accuracy and usability
1. eliminate overlapping message types by merging
2. identify multi-word variable positions

IM 2019 › Reactive Normalization › Message Type Discovery 12 of 27

Discovered Pattern-Set Example

Start processing (xor) Jen=user Service sshd:22 started
User John logged out Start processing (xor) Daniel=user
User Bob logged in User Ruth logged out
Start processing (xor) Thomas=user Start processing (xor) Tom Sawyer=user
Service httpd:8080 started Start processing (nor) Root=user

⇓ percentile=60, delimiters=' :=\(\)' ⇓

regexes: # regex tokens
INT: [integer, "[0-9]+"]
BOOL: [boolean, "\btrue\b|\bfalse\b"]
WORD: [string, "[0-9a-zA-Z]+"]
ARBITRARY: [string, "[^ \n\r]+"]
MWRD_1_2: [string, "[^ \n\r]+([\\s][^ \n\r]+){0,1}"]

patterns: # patterns describing the message types
grp0:

mt1: 'User %{WORD:var1} logged %{WORD:var2}'
mt2: 'Start processing (%{WORD:var1}) %{MWRD_1_2:var2}=%{WORD:var3}'
mt3: 'Service %{WORD:var1}:%{INT:var2} started'

IM 2019 › Reactive Normalization › Message Type Discovery 13 of 27

Evaluation, Results and Findings

Discovered message types partition the log messages into groups

F-measure: common accuracy metric in IR, higher is better
▶ F = 2·Precision ·Recall

Precision+Recall – how “close“ our grouping is to the ground truth

Ground truth: 5 real-life data-sets, MTs manually discovered
▶ P. He, et al. An Evaluation Study on Log Parsing and Its Use in Log Mining
▶ best average F-measure (IPLoM) – 0.892

BGL HPC HDFS Zook. Proxif. AVG
n = 50, d =space 0.8556 0.8778 1.0000 0.7882 0.8162 0.86756
n = 50, d =default 0.9251 0.9861 1.0000 0.9999 0.8547 0.95316
n = 15, d =default 0.9191 0.9861 0.6965 0.9182 0.8220 0.86838
n = 85, d =default 0.4949 0.9856 1.0000 0.9979 0.8547 0.86662
n = 50, d =best* 0.9985 0.9861 1.0000 0.9999 1.0000 0.99690

IM 2019 › Reactive Normalization › Multi-Pattern Matching 14 of 27

Research Goal 3 – Multi-Pattern Matching

Appropriate pattern must be used for each log message
▶ variable positions must be captured
▶ an appropriate structure must be returned

Naïve iteration is extremely slow (yet it is still widely-used!)
▶ there can be thousands of patterns

Multi-regex matching is not supported in common libraries
▶ set of regexes → NFA→ simulate input
▶ advanced features are hard to implement, e.g. sub-match capturing
▶ Google’s RE2 – 30k lines of C++
▶ possible limits in terms of memory

Our goal:
Design an alternative multi-pattern matching approach that scales
with respect to the number of patterns.

IM 2019 › Reactive Normalization › Multi-Pattern Matching 15 of 27

Regex Trie

c f

o

r o

a

r

car fo

r o

Service˽ User˽id:˽

%{INT}

˽logged˽

%{STRING}

˽started

in out

%{BOOL}

Search: depth-first traversal w.r.t. input log message
▶ variables are captured during traversal
▶ match when leaf is reached and no input is left
▶ non-match when traversal cannot continue

IM 2019 › Reactive Normalization › Multi-Pattern Matching 16 of 27

Evaluation, Results and Findings

Scalability tests: matching of 1.1M entries on single core
▶ Naïve + REtrie in Erlang, RE2 in C++ as control
▶ real-world log entries and pattern-sets

1.9 million matches/sec on 8 cores

1 7 15 22
1
2
3
4
5
6
7
8
9

10
11
12

Number of patterns in pattern set Px [x]

Ru
nn

in
g
tim

e
fo
rd

at
a
se
tD

x
[s
ec
on
d
s]

Naïve
REtrie
RE2

500 1,000 1,500 2,000 2,500 3,000 3,500
2.5

3

3.5

4

Number of patterns in pattern set Rx [x]

Ru
nn

in
g
tim

e
fo
rd

at
a
se
tH

x
[s
ec
on
d
s]

REtrie
RE2

IM 2019 › Reactive Normalization › End-to-End Normalization 17 of 27

E2E Log Data Normalization

Log abstraction is crucial, but not the only task of normalization:
▶ Input adaptation – TCP, HTTP, UDP

▶ Deserialization – text, JSON, CSV, XML

▶ Parsing – regex parsing, cleansing

▶ Transformation – string manipulation, strucutre manipulation

▶ Enrichment – adding structure, dictionaries

▶ Serialization – JSON, Avro

▶ Output adaptation – messaging systems

These tasks must be logically combined to achieve the desired results

IM 2019 › Reactive Normalization › End-to-End Normalization 18 of 27

Research Goal 4A,4B – Log Data Normalization

How do we describe and execute some desired normalization logic?
▶ log data normalization is a specialized domain with highly-specific tasks
▶ domain-specific languages are believed to fit such scenarios

Domain-specific language (DSL)
▶ high-level modeling of domain knowledge
▶ high expressiveness and rapid development for domain experts

Existing approaches: orientation on untyped transformations
▶ log management tools – rsyslog, syslog-ng, Logstash, Fluentd, nxlog
▶ the respective DSLs lack typing support
▶ our goal is to produce structured data – the notion of data types is essential

Our goal:
Design a log data normalization approach that is object-oriented and
statically-typed. Also, design a DSL implementing the approach, and
a normalization engine able to execute it.

IM 2019 › Reactive Normalization › End-to-End Normalization 19 of 27

Normalization via Prototype-Based Inheritance

pset1.ps

LineInputType

CONSTRUCT:
 ...

TYPE SIGNATURE:
 $line :: string

ServiceStarted

CONSTRUCT:
 extract_pattern(self.$line, "Se...")
 let $svc <- uppercase(self.$svc)
 destroy -> self.$line

TYPE SIGNATURE:
 $svc :: string

<<extended by>>

object1

$line = "Service ntpd started"

object3

$svc = "NTPD"

object2

$line = "User Bob logged in"

<<extended by>>

UserLogin

CONSTRUCT:
 extract_pattern(self.$line, "Us...")
 destroy -> self.$line

TYPE SIGNATURE:
 $user :: string

object4

$user = "Bob"

match_pattern
($line, pset1.ps)

service_started

user_login

service_started : Service %{STRING:svc} started

user_login : User %{STRING:user} logged in

New objects are created by reusing existing objects – prototypes
▶ normalization logic is a series of inheritances

IM 2019 › Reactive Normalization › End-to-End Normalization 20 of 27

YAML-Based Domain-Specific Language
input Syslog5544 produces EMBUS_TCP_LINE:

'@adapter': {module: embus_tcp_line, args: {port: 5544}}

type LineInputType extends EMBUS_TCP_LINE:
'@in': DEFAULT
'@do': #

$line: {trim: $line} # pset1.ps:
'@out': # ...

[retrie]: # example:
source: $line # service_started : ‘Service %{STRING:svc} started’
set: pset1.ps # user_login : ‘User %{STRING:user} logged in’
group: example #
type: extends

'example' + 'service_started' = ExampleServiceStarted
type ServiceStarted follows [ExampleServiceStarted]:

'@in': DEFAULT
'@bind':

$svc: {t: string}
'@do':
$svc: {uppercase: $svc}

EMBUS_TCP_LINE LineInputType
IA

ExampleUser
Login

ExampleServ
iceStarted

ServiceStarted

D

D

Auto-generated

DIRECT

DIRECT

[retrie]

TCP

IM 2019 › Reactive Normalization › End-to-End Normalization 21 of 27

DSL + Normalization Engine
The DSL is statically typed and it uses type inference
▶ it can be determined, which object types the normalization logic will produce
▶ data schemes are generated automatically

Basic transformation functions + automated structure extraction
▶ string manipulation (split, trim, replace)
▶ boolean operations (eq, gt, lt)
▶ structure extraction (retrie, tree-struct)

Normalization engine executes the DSL
▶ manages data input, normalization, and output into data streams
▶ highly-parallel implementation in Erlang

Delivery
EMBUS_TCP_LINE

LineInputType

ExampleUserLogin

ServiceStarted

ExampleServiceStarted

Normalization

P
R
O
D
U
C
E
R
S

C
O
N
SU
M
E
R
S

IM 2019 › Reactive Normalization › End-to-End Normalization 22 of 27

Results and Findings

E2E throughput evaluation for basic normalization logic
▶ throughput of the solution as a whole – log abstraction (500 patterns)
▶ approx. 220,000 normalized log entries/second on an 8-core server
▶ engine can handle 16k concurrent TCP connections

DSL preliminary applications (described logic)
▶ unstructured Syslog – Sendmail logs, Debian logs
▶ XML log entries – Windows Event Logs
▶ JSON log entries – BRO intrusion detection, IP flows

The normalized event objects can be directly consumed as streams!
▶ retention stores – e.g. Elasticsearch, HDFS
▶ data stream processing solutions – e.g. Apache Spark, Apache Storm
▶ Complex Event Processing solutions – e.g. Esper, WSO2 CEP

IM 2019 › Summary 23 of 27

Summary

IM 2019 › Summary 24 of 27

DEDMA + Future Work

A

A

A

CEP

Monitoring bus

Custom

event-driven

consumer

Producing entities

Retention

store

Event

processing system

Normalizer

Consuming entities

1

Structural

information

Delivery System

(Message Broker)

Pub-sub

E

E
Python

Java

C++

Output adapter

Input adapter

Control & configuration

2

3

4

IM 2019 › Summary 25 of 27

Final Tally

9 publications

23 undergraduate students

2+1 research project applications (security)
▶ “Security Cloud“ (TA04010062/2014)
▶ “KYPO Cyber Range“ (VI20162019014)
▶ “CSIRT-MU“ (day-to-day operation)

∞ friends and colleagues

IM 2019 › Summary 26 of 27

Selected Publications & Thank You!
▶ T. Jirsik, M. Cermak, D. Tovarnak, and P. Celeda. Toward Stream-Based IP

Flow Analysis. IEEE Communications Magazine, 2017.
[Q1 Journal, IF 10.435, 20%]

▶ D. Tovarnak. Practical Multi-Pattern Matching Approach for Fast and Scalable
Log Abstraction. ICSOFT ’16, 2016.
[CORE B Ranking, 100%]

▶ D. Tovarnak and T. Pitner. Continuous Queries Over Distributed Streams of
Heterogeneous Monitoring Data in Cloud Datacenters. ICSOFT ’14, 2014.
[CORE B Ranking, 90%]

▶ D. Tovarnak, A. Vasekova, S. Novak, and T. Pitner. Structured and
Interoperable Logging for the Cloud Computing Era: The Pitfalls and Benefits.
UCC ’13, 2013.
[IEEE/ACM Conference Proceedings, 80%]

▶ D. Tovarnak and T. Pitner. Towards Multi-tenant and Interoperable Monitoring
of Virtual Machines in Cloud. SYNASC ’12, 2012.
[CORE C Ranking, 90%]

IM 2019 › Acknowledgement 27 of 27

Acknowledgement

	
	Motivation
	Proactive Normalization
	Logging Mechanisms

	Reactive Normalization
	Log Abstraction
	Message Type Discovery
	Multi-Pattern Matching
	End-to-End Normalization

	Summary

