
AIDA Framework: Real-Time Correlation and Prediction of
Intrusion Detection Alerts

Martin Husák
Institute of Computer Science

Masaryk University
Brno, Czech Republic
husakm@ics.muni.cz

Jaroslav Kašpar
Institute of Computer Science

Masaryk University
Brno, Czech Republic
kaspar@ics.muni.cz

ABSTRACT
In this paper, we present AIDA, an analytical framework for pro-
cessing intrusion detection alerts with a focus on alert correlation
and predictive analytics. The framework contains components that
filter, aggregate, and correlate the alerts, and predict future se-
curity events using the predictive rules distilled from historical
records. The components are based on stream processing and use
selected features of data mining (namely sequential rule mining)
and complex event processing. The framework was deployed as
an analytical component of an alert sharing platform, where alerts
from intrusion detection systems, honeypots, and other data sources
are exchanged among the community of peers. The deployment is
briefly described and evaluated to illustrate the capabilities of the
framework in practice. Further, the framework may be deployed
locally for experimentations over datasets.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Network
security; • Computing methodologies→ Machine learning;

KEYWORDS
intrusion detection, information sharing, alert correlation, predic-
tion, data mining

ACM Reference Format:
Martin Husák and Jaroslav Kašpar. 2019. AIDA Framework: Real-Time
Correlation and Prediction of Intrusion Detection Alerts. In Proceedings
of the 14th International Conference on Availability, Reliability and Security
(ARES 2019) (ARES ’19), August 26–29, 2019, Canterbury, United Kingdom.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3339252.3340513

1 INTRODUCTION
Intrusion detection was subject of intensive research and develop-
ment but is still struggling with limitations, such as limited visibility
into the networks and information systems, insufficient knowledge
of the attack patterns, and lack of global situational awareness.
Many approaches were proposed to overcome such limitations. Col-
laborative intrusion detection [36] allows for exchanging timely
information between the intrusion detection systems, correlation
of alerts [6] provides a deeper understanding of the security events,

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 14th International Conference on Availability, Reliability and Security (ARES 2019)
(ARES ’19), August 26–29, 2019, Canterbury, United Kingdom, https://doi.org/10.1145/
3339252.3340513.

and predictive analytics [16] may provide early warning. However,
a certain level of technical maturity needs to be achieved before
the prospective approaches are applicable in practice, especially in
large and heterogeneous infrastructures.

This work is motivated by the experiences with the development
of an alert sharing platform. The platformwas created and deployed
to share alerts from a variety of intrusion detection systems, hon-
eypots, and other data sources deployed in various organizations.
Analysis of the data and their proper utilization arose as an inter-
esting research problem. One of the problems we are facing is the
volume of the data shared in the platform; typically, we receive
more than one million alerts per day. The recipients of the data
use the identifiers (IP addresses, hostnames, etc.) in the alerts for
various purposes, such as blacklisting, traffic filtering, etc. However,
using all of them is resource intensive, and not all the alerts and
identifiers are relevant for a specific data recipient. This is often
a reason for the data recipients to turn the data away as they do
not have the resource or capacity to process the data and select the
most relevant entries. We would like to significantly decrease the
volume of the data and focus on entries of particular interest for
the receiver in the form of “personalized” blacklisting.

In this work, we introduce AIDA1, an analytical framework de-
veloped for the needs of the alert sharing platform, but also usable
in other scenarios. The framework receives all the data (alerts) sub-
mitted to the sharing platform and performs statistical analysis,
aggregation, and correlation of the alerts. We selected event pre-
diction as a primary use case for the analytical framework as it
illustrates various tasks performed during the analysis of intrusion
detection alerts. The alerts are aggregated to eliminate duplicate
alerts representing the same events, correlated with distilling at-
tack scenarios in the form of alert sequences, and, finally, the alert
sequences are matched against the newly arrived alerts to predict
upcoming events, that are reported to the sharing platform. Thus,
we are able to gain a deeper understanding of the security situation
and provide personalized early warning to the organizations at risk.

The contributions of this paper are twofold. First, we introduce a
framework for the analysis of intrusion detection alerts shared in an
alert sharing platform. The framework uses modern approaches to
data processing, such as real-time data analysis and selected meth-
ods of data mining and complex event processing. Our framework
is deployed as an analytical component of alert sharing platform
SABU2. Second, we introduce predictive analytics as a use case for
the framework. We distill common sequences of alerts to generate
predictive rules and use them to predict future security events. The

1https://github.com/CSIRT-MU/AIDA-Framework
2https://sabu.cesnet.cz/en/start

1

https://doi.org/10.1145/3339252.3340513
https://doi.org/10.1145/3339252.3340513
https://doi.org/10.1145/3339252.3340513
https://github.com/CSIRT-MU/AIDA-Framework
 https://sabu.cesnet.cz/en/start

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Martin Husák and Jaroslav Kašpar

predictive analysis illustrates the power of the framework, namely
the Data Mining and Rule Matching components. Inferring alerts
from attacker’s recent activity and predicting the location of the
upcoming security event allows for personalized blacklisting and
reduced the volume of data sent to the recipients.

This paper is organized as follows. Section 2 presents the related
work on sharing intrusion detection alerts, their correlation, and
predictive analysis. Implementation of the framework for the analy-
sis of intrusion detection alerts is provided in Section 3. The results
of the executed empirical evaluation are presented and discussed in
Section 4. Section 5 concludes the paper and pinpoints a few topics,
which pave the way for future work.

2 RELATEDWORK
Collaboration and information exchange has become a substan-
tial part of cybersecurity practice, from the cooperation between
intrusion detection systems [13] to nation-wide information shar-
ing [32]. Research and development have focused on automating
the process so that timely and important pieces of information
would be exchanged to provide early warning [30], increase the
precision of intrusion detection or simply to announce a threat.
From a research perspective, a lot of attention was dedicated to
collaborative intrusion detection, which is essentially a low-level
information sharing between intrusion detection systems. The theo-
retical background of this topic was described in details by Fung and
Boutaba [13], and surveyed by Meng et al. [25] and Vasilomanolakis
et al. [36]. From the practitioner’s perspective, many implementa-
tions of security information sharing platform exist as surveyed
by ENISA [7, 8]. Real-world information exchange platforms focus
rather on high-level pieces of information such as security alerts,
formal representations of security events reported by intrusion
detection systems. An overview of formats and protocols for the
exchange of such information was presented by Steinberger et
al. [33].

Formalization of security alerts allowed a whole new field of
research to emerge, the security alert correlation [5]. The task of
alert correlation is to put together corresponding alerts, find rela-
tions between alerts, and reconstruct the progress of an attack, but
also to recognize the focus of an attacker and analyze the impact
of potential security incidents. The detailed tasks and processes of
security alert correlation were proposed by Valeur et al. [35], while
Cuppens and Miège [3] discussed the problem from the perspective
of collaborative intrusion detection. Briefly, the alerts from sensors
need to normalized, fused (aggregated), and verified first. Subse-
quently, the attack session can be reconstructed for the purposes of
attack focus recognition, multi-stage attack correlation, and impact
analysis [35]. The three later stages of alert correlation overlap with
the task of attack prediction. Elshoush et al. [6] surveyed methods
of alert correlation in a collaborative environment.

When the security alerts are correlated, and certain relations
between them are observed, we can use this knowledge to pre-
dict the behavior of future attackers and progress of future at-
tacks [16]. In the past, we have seen attempts to predict the at-
tack progression or the desired goal of an adversary (this is of-
ten referenced in literature as attack projection and focus recogni-
tion). Early approaches used predefined models of attack scenar-

ios. Such models could be attack graphs [23, 34], Bayesian net-
works [28, 31], or Markov models [9, 27], to cite the most rele-
vant contributions. If a series of detected events corresponds to
a part of an attack scenario in the model, the remaining parts of
the scenario can be predicted. However, due to high demands on
creating such models manually and continuously changing threat
landscape, researchers started using methods of data mining to
(semi-)automatically create the patterns and models to match and
project running attacks [9, 19, 22, 23, 34]. Farhadi et al. [9] proposed
a real-time approach, Kim and Park [22] proposed using continu-
ous data mining, and Jiang et al. [19] combined data mining with
similarity search. Simultaneously, attack prediction methods based
on machine learning were proposed [2, 37].

Although the attempts to predict attacks are almost two decades
old, they still mostly focus on predicting the events for a single ob-
servation point or a single network and were rarely combined with
collaborative approaches to cyber security and intrusion detection.
Only a few works approached the problem yet. For example, collab-
orative predictive blacklisting has been a subject of research [12, 24]
with promising results against specific attacks. Predictive analytics
based on information exchange can be found in work on network
entity characterization by Bartoš et al. [1]. However, a generic ap-
proach similar to early attempts to attack prediction is still an open
research problem [16, 36].

The purpose of attack projection and prediction is to mitigate the
attack preemptively. Thus, the attention of the researchers in the
field is also focused on countermeasure selection, e.g., as surveyed
by Nespoli et al. [26]. Similarly to preceding tasks, a large amount
of heterogeneous data and events calls for research on selecting
optimal countermeasures and development of reaction frameworks
that can be combined with SIEM, early warning, and prediction
systems [30].

Contrary to previous work, we do not focus on methods of alert
sharing, correlation, and prediction, but on the design principles
of an analytical framework that performs such tasks, especially
in a collaborative environment. The methods implemented in our
framework and preliminary evaluations of their capabilities were
already presented in our previous works [14, 15, 18]. Only a few of
the related works describe an implementation of an analytical tool
or framework; notable exceptions are the framework by Farhadi
et al. [9], who also proposed using stream-based data processing,
and RTECA [29], a framework for early warning based on real-time
episode correlation. However, tools to be used for processing data
from alert sharing platforms are rather scarce.

3 AIDA FRAMEWORK
Herein, we provide the description and reasoning behind the im-
plementation of the AIDA framework. First, we present an overall
scheme and outline data paths. Subsequently, we describe particular
components for alert processing. General concepts applied in the
design of AIDA are modularity and focus on real-time stream-based
processing of the data. It is important to keep in mind that the data
might be modified or dropped by any component, which might
influence the data processing downstream. The variety and order of
the presented components are loosely based on the security event
prediction use case. Nevertheless, using and developing additional

2

AIDA Framework ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

components is possible and encouraged; several components were
used in our previous work for various purposes, such as identifying
relations between the data and computing statistics [17, 18].

Schema of the AIDA framework is presented in Figure 1. The
central component of the framework is Kafka message broker3 that
takes the data from inputs and distributes them among the other
components while ensuring the correct order of processing of the
alerts. Particular components can then be found in two component
groups based on their underlying software platform. On the left side,
we can see a group of components implemented as applications
in Spark analytical engine4. These applications typically receive
a stream of alerts from Kafka, process them, and return them to
Kafka. Some applications, such as the Data Mining component,
have another output, such as a database for long-term storage of
results of data processing. On the right side of the schema, we can
see an application based on Esper5, another event stream process-
ing framework. The component implemented using Esper uses its
features, such as a powerful query language, for the benefits of the
whole AIDA framework. The Rule Matching component is also one
of the few that provide outputs outside the framework. Outputs
are in the same form as inputs, i.e., intrusion detection alerts, so
the output channel is implemented analogously. More details on
particular components are discussed further in this section.

3.1 Inputs and Data Distribution
Data distribution in the AIDA framework is resolved using Apache
Kafka, a stream-processing message broker. Kafka receives the
alerts from the inputs and distributes them via named topics in the
publish-subscribe pattern. In our implementation, we have several
topics in which we distribute alerts in different phases of processing.
For example, alerts taken from the input are distributed in the input
topic, where they are accessed by components that require raw
data. The Alert Aggregation component reads alerts from the input
topic, modifies the data, and writes to a different topic, named
aggregated, where preprocessed data are accessible. Similar topics
exist for predicted events and so on.

Inputs may vary depending on the deployment scenario, see
Section 4. If the framework is deployed as a service, it receives the
alert via a client of the sharing platform. In a standalone deployment,
data can be read from a socket or a file system. AIDA framework
takes advantage of the popularity of JSON data serialization in
current stream-processing tools and, thus, expects the input alerts to
be formatted in IDEA (IntrusionDetection Extensible Alert) format6.
IDEA is inspired by IDMEF, a popular alert exchange format [4].
Contrary to IDMEF, IDEA is extensible, includes a classification of
alerts based on taxonomies from CSIRT communities [21], and is
adjusted to suit practical needs [20]. However, if needed, conversion
from IDMEF to IDEA is rather straightforward.

The inputs may be further checked using the Data Sanitizer com-
ponent. The Data Sanitizer is a stream-processing tool for syntactic
and semantic checks of the alerts on the input. It checks for the
validity of the JSON, in which the alert is serialized, checks if all the
mandatory entries are present, and uses a set of rules for semantic
3https://kafka.apache.org/
4https://spark.apache.org/
5http://www.espertech.com/esper/
6https://idea.cesnet.cz/en/index

checks. Alerts matching those rules may be modified or filtered out.
The motivation for using semantic checks is to eliminate useless
alerts from being processed in the framework. For example, alerts
of phishing incidents typically do not contain any IP addresses that
we use for correlating alerts. Further, it is possible to delete all the
unnecessary entries from the alert to speed up data processing in
the whole framework.

3.2 Alert Aggregation Component
Alert Aggregation component is the first application in the pro-
cessing pipeline. Its task is to find and mark redundant alerts so
that these are not included in further analyses. Alert sources often
report the same information in several alerts, the alert of the same
event may also be generated by multiple sources [18]. The presence
of multiple alerts describing the same event may slow down and
influence the result of the subsequent operations, especially the
data mining process [15].

The component is implemented as a Spark application. It pro-
cesses the stream of alerts, keeps the vectors of their main features
(timestamp, source and target IP addresses, source and target ports,
alert source, and event category), and matches the alerts with sim-
ilar features according to a set of rules. The first alert with such
features is left untouched; all the other are marked as duplicates of
the first alert. The vectors are kept in a predefined time window, in
which the alerts can be matched.

The rules for alert matching were inferred from our previous
work [17, 18]. There are two rules to eliminate duplicates and re-
peated alerts of the same events. If all the features in the vector
are the same, or only the timestamp is different, all alerts but the
first one are marked as duplicates and are omitted from further pro-
cessing. Further, there are rules to match alerts of the same event
from multiple sources, e.g., intrusion detection systems deployed
in different places. These alerts are marked differently as they may
or may not be used in further analyses. Further aggregation rules
and markings may be applied.

3.3 Data Mining Component
TheDataMining component fulfills the needs of alert correlation. Its
purpose is to infer frequent patterns in the alerts so that the patterns
may later be used to match related alerts and predict upcoming
security events. We used the techniques of sequential pattern and
rule mining, which reflect the use cases well [15]. The component
consists of two parts, database generator and miner.

The first software part, the database generator, is implemented
as a Spark application. It continuously extracts sequences from
the alerts and saves them to a database. A sequence is a vector
of n-tuples that share a common property. In our implementation,
we chose a source IP address as common property. We also imple-
mented a similarly behaving alternative that is using a pair of source
and target IP addresses. The n-tuple consists of an alert type, target
port, and name of the node (e.g., IDS). Thus, a sequence describes
the behavior of a certain IP address in a time window. We chose
this combination of keys and values as most promising concerning
the number and usability of the results. However, many other com-
binations can be used for different purposes, e.g., inferring patterns
of distributed attacks.

3

https://kafka.apache.org/
https://spark.apache.org/
http://www.espertech.com/esper/
https://idea.cesnet.cz/en/index

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Martin Husák and Jaroslav Kašpar

Alerts

Data
Sanitizer

Alert
Aggregation

Data Mining Rule Matching

Predicted
 Alerts

(Prediction)

Sequential
Rules

11
0000
1111

11
0000
111111

0000
1111

11
0000
1111

11
0000
111111

0000
1111

11
0000
1111

 Input

 Output

Feedback

Figure 1: The schema of AIDA, framework for correlation and analysis of intrusion detection alerts.

OrganizationA.Honeypot1_Recon.Scanning_22 ,
OrganizationB.IDS1_Attempt.Login_22
==>
OrganizationA.IDS1_Attempt.Login_22
#SUPP: 0.0011 #CONF: 0.6111

Figure 2: Example of a sequential rule.

All the sequences are being continuously stored in a sequence
database for the data mining that is conducted by the second part
of the component, the rule miner. Contrary to all the other com-
ponents, the miner is a batch script that is executed periodically,
typically once in a day in our case, when enough sequences are ex-
tracted by the stream-based database generator. The miner is based
on SPMF library [10] that contains implementations of sequential
pattern and rule mining algorithms. The script processes the se-
quences collected by the database generator and mines frequent
patterns or rules, depending on the selected algorithm. For the pur-
poses of security event prediction, we chose Top-K sequential rule
mining algorithm [11] to mine rules that are directly applicable for
predictions. Once the mining is completed, the sequential database
is cleared for the next collection period.

An example of an output of the miner, and the Data Mining com-
ponent, in general, is presented in Figure 2. It consists of ordered
n-tuples (sensor name, type of event, destination port) and support
and confidence values. The n-tuples fold two groups; the first group
implies the second group. Support value indicates the number of se-
quences in the sequential database that conform to the rule divided
by the total number of all the sequences. The confidence value is a
conditional probability of the second part of the rule given the first
part of the rule.

3.4 Rule Matching Component
The Rule Matching component is the final application in the alert
processing pipeline. It processes the stream of alerts and queries
them for the presence of predefined patterns (sequences). If a prede-
fined pattern is found, an action is performed. In case of prediction
use case, the Rule Matching component takes sequential rules from
the previous components and converts them into the queries over
the stream of alerts. If the first part of a predictive rule is found in

the stream of alerts, a new alert is generated using the second part
of the predictive rule. Thus, the predictions are performed in this
component.

The component was implemented as a stand-alone application
using Esper software. Esper is a tool for Complex Event Processing
(CEP) over a stream of data, even streams of large volumes of
data such as network flows [38]. Its main advantage is EPL (Event
Processing Language) that allows for SQL-like queries over a stream
of data. Once an Esper application is running, we provide it with
a list of queries and a stream of data. Then, we catch the matches
of the query and react with a predefined action. In our case, we
convert the first parts of predictive rules into EPL queries so that the
matches (query results) trigger the generation of predicted alerts.

An EPL query generated from a sequential rule can be seen
in Figure 3. Although the rules are quite simple, there is a minor
inconvenience in converting the rules into EPL queries. We had
to include permutations in the patterns so that the query behaves
correctly. In the example, we have a rule consisting of two items
denoted as A and B. Basic query would match only situations where
alert A is directly following alert B. However, we want to match
any occurrence of alerts A and B, regardless of their order and other
alerts between them. Thus, the permutations and the wildcarded
alert C were added into the query. The rest of the query is simply
matching the items in the alerts.

An example of predicted alert can be seen in Figure 4. The pre-
dicted event is derived from the second part of the rule and contains
IDs of rules on which the prediction was based, i.e., alerts that were
matched by EPL query. The source IP address is taken from the
matched alerts, and the remaining features are taken from the rule.
Further, the predicted alert contains the current timestamp and
descriptions, including the rule itself.

3.5 Feedback Component
The last alert processing component serves to collect feedback
on event prediction and similar tasks. The Feedback component
checks if a predicted event appeared in the alerts and if so, after
what time after the prediction. Thus, we may log and measure
the precision of predictions and collect feedback on the predictive
rules. Using the logs of the Feedback component, we may calculate
minimal, maximal, and average time between the prediction and the

4

AIDA Framework ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

select * from Idea.ext:time_order(detectTime.getTime (), 1
hour)

match_recognize (
partition by source [0]. IP4[0]
measures A as a, B as b
pattern (match_recognize_permute(A, B, C*?))
define

A as A.category.contains('Recon.Scanning ')
and A.node.countOf(v => v.name = 'OrganizationA.

Honeypot1 ') > 0
and A.target.countOf(v => v.port.countOf(i => i =

22) > 0) > 0,
B as B.category.contains('Attempt.Login ')

and B.node.countOf(v => v.name = 'OrganizationB.
IDS1 ') > 0

and B.target.countOf(v => v.port.countOf(i => i =
22) > 0) > 0

)

Figure 3: Predictive rule converted into EPL query.

{
"Format ": "IDEA0",
"ID":" f62537c2 -77b8 -49c7-a0a2 -24 c4b81b20f8",
"CorrelID ": [% IDs of preceding alerts

"3688762d-2efa -44a8 -9ea5 -34 a57b3ae0c7",
"ae6d9ac6 -6389 -407f-9d7e -58 b9692c6eaa"

],
"DetectTime ": "2019 -03 -16 T12 :17:21.609+00:00" ,
"Category ": [" Attempt.Login"],
"Confidence ": "0.6111" ,
"Description ": "The source IP address follows a known

pattern that is expected to continue with the
event described in this message.",

"Note": "OrganizationA.Honeypot1_Recon.Scanning_22 ,
OrganizationB.IDS1_Attempt.Login_22 ==>
OrganizationA.IDS1_Attempt.Login_22",

"Source ": [{"IP4": ["10.11.12.13"]}] ,
"Target ": [{" Port ":[22]}] ,
"Node": [

{ % Node referencing the AIDA Framework
"Name": "OrganizationX.AIDA",
"SW": "AIDA",
"Type": [" Correlation", "Statistical "]

},
{ % Node derived from the rule

"Name": "OrganizationA.IDS1"
}

]
}

Figure 4: Example of predicted security event.

predicted event, which might serve as indicators of usability of the
rules. For example, predicting events that will happen immediately
is not useful, while predicting the events several minutes or hours
in advance leaves enough time to spread the predicted alerts and
set up proper countermeasures [14].

We decided to implement feedback collection as a standalone
component rather than a part of the Rule Matching component.
Thus, we may conduct experiments with various implementations
of event predictions while keeping a single feedback component
that calculates the necessary metrics. The functionality of the com-
ponent is simple, in essence, so there is no need to implement it
using frameworks like Spark or Esper as in other components. In-

stead, we used a script in Python that saves unique identifiers of
predicted events in an array and checks if newly arrived alerts have
similar content. If a match is found, the component logs a match
and time difference between prediction and arrival of predicted
alert. This information is later used for calculating prediction met-
rics, including true and false positive rates, precision, and recall.
Calculation of the minimal and average time between prediction
and predicted alert is beneficial for future use of predictive rules.
However, the requirements on the Feedback component may vary
depending on a particular use, so we leave space for future work.

3.6 REST API and Web Interface
The AIDA framework is equipped with a REST API and web in-
terface so that the runtime information is easily accessible. The
REST API serves as the main communication point between the
AIDA framework and the web interface. It provides the information
on the status of the framework, its components, and underlying
systems, including the runtime, system load, and last five log en-
tries. Further, there are endpoints enabling manipulation with the
database of sequential rules that allow for actions such as listing
the rules, (de)activating rules, deleting rules, and inserting custom
rules.

The web interface is designed in the form of a dashboard. The
initial screen shows the schema of the AIDA framework, where each
component signalizes its status with a green or red light. Further
screens show detailed information on particular components.

4 DEPLOYMENT AND EVALUATION
In this section, we describe how the AIDA framework was deployed
in the SABU alert sharing platformand how it performed. First, we
include the schema of deployment and important configuration
options. Subsequently, we provide observations and comment on
experiences gained while running the framework. Finally, we briefly
describe an alternative deployment option for experimentation and
repeatable measurements.

4.1 Deployment in the Alert Sharing Platform
The position of AIDA within an alert sharing platform is reflecting
the fact the sharing platform is centralized with a single sharing
hub. Thus, AIDA needs to interact with only the central sharing
hub. The central hub receives the alerts from various sending con-
nectors, including third-party alert sharing systems, and distributes
them to various receiving connectors, including reporters. There is
no need for AIDA to communicate directly with other components
of the sharing platform. Otherwise, AIDA acts as both receiving
and sending connector, in essence, indistinguishable from other
connectors in terms of communication interface and implementa-
tion. The schema of AIDA and its placement within the sharing
platform is depicted in Figure 5. The other components and data
flow are described in this section.

The data flow in the sharing platform relevant for AIDA goes as
follows. The alerts raised by intrusion detection systems and other
sensors are collected by sending connectors and sent to the central
sharing hub. Alternatively, alerts are transferred from a third-party
alert sharing platform and shared via a specialized sending connec-
tor. In both cases, the incoming data are formatted in IDEA alert

5

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Martin Husák and Jaroslav Kašpar

AIDA

11
0000
1111

11
0000
111111

0000
1111

11
0000
1111

11
0000
111111

0000
1111

11
0000
1111

11
0000
111111

0000
1111

11
0000
1111

11
0000
111111

0000
1111 Active Network

Defense (firewalls,
RTBH, ...)

11
0000
1111

11
0000
111111

0000
1111

11
0000
1111

11
0000
111111

0000
1111

Intrusion
Detection System

Third-party Alert
Sharing Platform

Honeypot

Research & Threat
Intelligence

Figure 5: The deployment of AIDA in the SABU alert sharing platform.

format. The central hub stores a queue of alerts that are ready to be
dispatched to receiving connectors. Receiving connectors, including
AIDA, can access all the alerts in the central hub queue in real time.
AIDA receives the data from the central hub, process them, and
generates predicted alerts. Again, the alerts are formatted in IDEA
format, although with appropriate marks that distinguish predicted
alert from an ordinary alert. Predicted alerts are sent to the central
hub due to AIDA’s ability to act also as a sending connector. The
remaining receiving connectors may receive all the data from the
central hub, now including the predicted alerts from AIDA. It is up
to receiving connectors what to do with such information; potential
mitigation and incident response [26] are out of the scope of this
work.

To summarize the data flows, there are three paths of alerts.
First, there is a direct path from sending connectors to receiving
connectors via the central sharing hub. Potentially, every receiving
connector may receive all the data from sending connectors, but
due to the amount of data and the fact that only a part of them are
usable at some point, it is not often the case. Thus, the second path
for alerts is from sending connectors via the central hub to AIDA,
where the data are consumed during the analysis. Then, there is
a path for predicted alerts from AIDA via the sharing hub to the
receiving connectors. In this path, only the predicted alerts are
transferred, which significantly reduces the volume of the data.

4.2 Configuration and Discussion
Herein, we are going to briefly comment on experience gained
while running AIDA framework as described above. The AIDA
framework was deployed on a dedicated server based on commod-
ity hardware (Intel Xeon E5520, 8 threads, 16 GB RAM) and running
Debian 8.11. Particular components were based on Kafka version
2.2.0, Spark version 2.2.0, and Esper version 8.0.0, most of them
running on Java 8. As of the first half-year of 2019, we receive
around 1.7 million alerts per day. We did not encounter any signifi-
cant performance issues or insufficient memory issues during the
experimental deployment with the presented configuration. Batch-

processing tasks, such as data mining, caused spikes in hardware
load, but it did not slow down the rest of the framework. However,
we are aware of configurations with poor performance. Luckily,
such tasks are not the ones with valuable results [15].

Strict input filtering rules had to be applied to ensure the correct
functioning of the framework and reasonable outputs. The connec-
tor to the sharing platform allows for limited filtering of the alerts,
but the filtering rules for AIDA turned out to be more complex.
Apart from the validity and completeness of IDEA-formatted alerts,
we had to check for semantic issues and particular content. First,
we had to drop all the alerts that contained no source IP address
or destination port, because our use case relies on these identi-
fiers. Similarly, alerts of selected categories were also dropped from
processing, including alerts of misconfigurations and vulnerability
presence, which are not very useful for our use case. Subsequently,
encounter numerous alerts of questionable quality. For example,
some peers in the sharing platform contributed with alerts of ques-
tionable quality, such as alerts of network scanning raised in re-
sponse to only one or very few packets, while the majority of peers
understand network scanning as an event consisting of hundreds or
thousands of packets. Similarly, we encountered misleading alerts
of brute-force password attack raised in response to a single failed
authentication. In response, we set a threshold for the minimal
number of packets in scans and attempts at brute-force password
attacks. Another problem that we faced was with alerts contain-
ing too many sources or targets. Peers in the platforms crafted
alerts with thousands of source IP addresses instead of putting IP
address range as recommended. Such alerts, in some cases, caused
performance issues in some components, where particular IP ad-
dresses and ports were correlated. Overall, input filtering dropped
approximately 1 % of the alerts.

The amount of aggregated alerts loosely follows our previous
measurements [18]. Around 1.5 % of alerts are duplicates of another
alert, i.e., they contain the same information. Around 54 % of alerts
are consecutive duplicates of another alert, i.e., alerts by the same
data source in response to the same event over an extended time.

6

AIDA Framework ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Other deduplication and aggregation methods were not examined
as they were not necessary for the given use case. Time windows,
in which the alerts were aggregated, were set to 5 minutes for dupli-
cates and 70 minutes for continuations because some contributing
data sources report alerts once per hour.

The Data Mining component performed adequately; the sequen-
tial database was collected continuously and, once a day, the data
mining was executed, and the database was cleared. From the 1.7
million alerts per day, we distilled around 650,000 sequences that
had the same source IP address and around 170,000 sequences that
shared the same source and target IP address. The run time of the
data mining using Top-k algorithm from the SPMF library was
typically around 20 seconds in both cases. From the various com-
binations of item sets, we choose to use items consisting of alert
category, source IP address, and target port. Given the data, this
combination led to the most valuable results and reflected the be-
havior of an attacker fairly well. Further, we experimented with a
null value for port numbers. Not many alerts contained target port
number, so we added the null value instead, and let the framework
process it as any other port number. There were situations where
part of the rule (attackers’ common behavior) was a vertical scan or
another event that is often reported without a port number. How-
ever, due to a large number of alerts of various categories without
a port number, we saw an increase in the number of rules with
low information value, such as correlations of unspecified network
scans with other unspecified network scans.

The framework is designed to store newly found rules in the
database, where it can be checked by a human operator and acti-
vated for the needs of the Rule Matching component. During the
experimentation, we updated the rules every day with the rules
mined on the previous day. We did not perform manual filtering.
However, mining 10 alerts per day, we noticed 2-3 rules per day that
would not be suitable for practical use, mostly because of their ob-
viousness or low informative value, such as permutations of other
rules or rules based on detection of the same event by different
intrusion detection systems overlapping in network scope. As we
illustrated earlier [14], the rules are stable over time, so on average
8 rules out of 10 mined every day are the same as the day before,
the only difference is in slightly changing values of support and
confidence. However, long-term monitoring of mined rules, at least
over several months, would be beneficial.

The Rule Matching and Feedback components provided expected
results since the rules are stable over several days [14]. Thus, the
number of matched rules and percentage of successful predictions
loosely followed the values of support and confidence of the rule.
Although we set the minimal threshold for confidence value in a
rule to 0.5, the actual values in Top-10 rules rarely dropped below
0.6 and often reached values up to 0.8 and 0.9 [14, 15]. Time dif-
ferences between the prediction and observation of the predicted
event were in the order of minutes or tens of minutes on average,
while minimal time differences in approximately half of the cases
dropped to only a few seconds. We considered this when select-
ing suitable predictive rules, and we would recommend to set up
rule matching first, estimate minimal and average time differences
between predictions and predicted events, and then activate or
inactivate the rule in the matching component.

On the contrary, the performance of the Rule Matching compo-
nent was not always satisfactory. Given the fact that every query in
Esper requires approximately the same available resources, it is not
very scalable. We were running ten queries in parallel, one for every
Top-10 rules mined on the previous day. Running more parallel
queries caused quick depletion of memory. However, we optimized
the query by introducing a time window in which the alerts and
queried and by dissecting the query. All the items from the rule are
detected separately, and the matching of the rule is performed on
the outputs of these queries, i.e., on a higher level of abstraction.
Thus, we achieved a significant reduction of memory consumption
for the cost of a slight increase in the demands on CPU, which
allowed us to run more than a hundred queries in parallel. The
optimized query is too long to be included in the text and not as
comprehensible as the original query in Figure 3. Nevertheless, the
principles remain the same.

4.3 Stand-alone Deployment
An alternative deployment of the AIDA framework is a stand-alone
application. In such a scenario, AIDA is started locally, and the
input data are provided in a batch. This is convenient for testing
and processing batches of data such as datasets. The whole event
prediction use case discussed throughout this paper might not be
the most suitable for a stand-alone deployment scenario. However,
particular components and tasks, such as relationship discovery
and mining attack sequences, are worth performing over datasets
and other batch inputs. Further, stand-alone deployment, along
with a proper dataset, allows for experimentation with the data
using different settings of the components and used methods.

There are several specifics of the stand-alone deployment sce-
nario. First, the data must be sent manually to the framework. We
implemented an interface that allows Kafka to automatically read
alerts from files in a given directory so that the users only have to
copy the dataset to the appropriate location. Some components are
dependant on timing, which means that, in a stand-alone mode, a
signal needs to be sent to the components to trigger actions such as
running the data mining. Users are allowed to trigger such actions
via the web interface.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented AIDA, a framework for analyzing cy-
bersecurity alerts with a special focus on alert correlation and
prediction of security events. The source codes are available on
GitHub. The framework allows for stream processing of security
alerts in near real time and is based on current technologies for Big
Data processing, such as Apache Spark and Esper. We deployed the
AIDA framework in the SABU alert sharing platform, where alerts
from various intrusion detection systems and honeypots from mul-
tiple networks are exchanged. The Alert Aggregation, Data Mining,
and Rule Matching components were used in a scenario of security
event prediction.

In our future work, we are going to develop the framework
further and investigate the methods used in its components. For
example, the Rule Matching component is based on Esper so that it
can run complex queries over the stream of data. This approach is re-
liable and highly extensible. However, certain tasks, such as security

7

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Martin Husák and Jaroslav Kašpar

event prediction, might be optimized using alternative approaches
and implementations. In related work, we can see many approaches
to security event prediction based on Attack graphs, Bayesian net-
works, and Markov models [16, 26]. These models provide a solid
background for efficient computation, and it might be interesting to
compare the performance of CEP-based and graph-based matching
components. Finally, we are going to publish an annotated dataset
of alerts so that the users have a chance to familiarize themselves
with the framework on sample data.

ACKNOWLEDGMENTS
This research was supported by ERDF “CyberSecurity, CyberCrime
and Critical Information Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16_019/0000822).

REFERENCES
[1] Václav Bartoš, Martin Žádník, Sheikh Mahbub Habib, and Emmanouil Vasilo-

manolakis. 2019. Network entity characterization and attack prediction. Future
Generation Computer Systems 97 (2019), 674 – 686.

[2] Casey Cipriano, Ali Zand, Amir Houmansadr, Christopher Kruegel, and Giovanni
Vigna. 2011. Nexat: A History-based Approach to Predict Attacker Actions. In
Proceedings of the 27th Annual Computer Security Applications Conference (ACSAC
’11). 383–392.

[3] Frédéric Cuppens and Alexander Miège. 2002. Alert correlation in a cooperative
intrusion detection framework. In Security and Privacy, 2002. Proceedings. 2002
IEEE Symposium on. 202–215.

[4] H. Debar, D. Curry, and B. Feinstein. 2007. The Intrusion Detection Message
Exchange Format (IDMEF). RFC 4765 (Experimental). (March 2007). http:
//www.ietf.org/rfc/rfc4765.txt

[5] Hervé Debar and Andreas Wespi. 2001. Aggregation and correlation of intrusion-
detection alerts. In International Workshop on Recent Advances in Intrusion Detec-
tion. Springer, 85–103.

[6] Huwaida Tagelsir Elshoush and IzzeldinMohamed Osman. 2011. Alert correlation
in collaborative intelligent intrusion detection systems – A survey. Applied Soft
Computing 11, 7 (2011), 4349–4365.

[7] ENISA. 2013. Detect, SHARE, Protect – Solutions for Im-
proving Threat Data Exchange among CERTs. https://
www.enisa.europa.eu/activities/cert/support/information-sharing/
detect-share-protect-solutions-for-improving-threat-data-exchange-among-certs/
at_download/fullReport. (Oct. 2013).

[8] ENISA. 2014. Standards and tools for exchange and processing of
actionable information. https://www.enisa.europa.eu/publications/
standards-and-tools-for-exchange-and-processing-of-actionable-information/
at_download/fullReport. (Nov. 2014).

[9] Hamid Farhadi, Maryam AmirHaeri, and Mohammad Khansari. 2011. Alert
Correlation and Prediction Using Data Mining and HMM. ISeCure 3, 2 (2011).

[10] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Antonio Gomariz, Ted Gueniche,
Azadeh Soltani, Zhihong Deng, and Hoang Thanh Lam. 2016. The SPMF Open-
Source Data Mining Library Version 2. In Proc. 19th European Conference on
Principles of Data Mining and Knowledge Discovery (PKDD 2016). Part III, Springer
LNCS 9853, 36–40.

[11] Philippe Fournier-Viger and Vincent S. Tseng. 2011. Mining top-k sequential
rules. In International Conference on Advanced Data Mining and Applications.
Springer, 180–194.

[12] Julien Freudiger, Emiliano De Cristofaro, and Alejandro E. Brito. 2015. Controlled
Data Sharing for Collaborative Predictive Blacklisting. Springer International
Publishing, Cham, 327–349.

[13] Carol Fung and Raouf Boutaba. 2013. Intrusion Detection Networks: A Key to
Collaborative Security. CRC Press.

[14] Martin Husák and Jaroslav Kašpar. 2018. Towards Predicting Cyber Attacks
Using Information Exchange and Data Mining. In 2018 14th International Wireless
Communications Mobile Computing Conference (IWCMC). 536–541.

[15] Martin Husák, Jaroslav Kašpar, Elias Bou-Harb, and Pavel Čeleda. 2017. On the
Sequential Pattern and Rule Mining in the Analysis of Cyber Security Alerts. In
Proceedings of the 12th International Conference on Availability, Reliability and
Security. ACM, Reggio Calabria, "22:1–22:10".

[16] Martin Husák, Jana Komárková, Elias Bou-Harb, and Pavel Čeleda. 2019. Sur-
vey of Attack Projection, Prediction, and Forecasting in Cyber Security. IEEE

Communications Surveys & Tutorials 21, 1 (Firstquarter 2019), 640–660.
[17] Martin Husák and Milan Čermák. 2017. A Graph-based Representation of Rela-

tions in Network Security Alert Sharing Platforms. In 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). IEEE, Lisbon, 891–892.

[18] Martin Husák, Milan Čermák, Martin Laštovička, and Jan Vykopal. 2017. Ex-
changing Security Events: Which And How Many Alerts Can We Aggregate?. In
2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
IEEE, Lisbon, 604–607.

[19] Ci-Bin Jiang, I-Hsien Liu, Yao-Nien Chung, and Jung-Shian Li. 2016. Novel
intrusion prediction mechanism based on honeypot log similarity. International
Journal of Network Management 26, 3 (2016), 156–175.

[20] Pavel Kácha. 2013. IDEA: Designing the Data Model for Security Event Exchange.
In 17th International Conference on Computers: Recent Advances in Computer
Science.

[21] Pavel Kácha. 2014. IDEA: Security Event Taxonomy Mapping. In 18th Interna-
tional Conference on Circuits, Systems, Communications and Computers.

[22] Yong-Ho Kim and Won Hyung Park. 2014. A study on cyber threat prediction
based on intrusion detection event for APT attack detection. Multimedia Tools
and Applications 71, 2 (2014), 685–698.

[23] Jie Lei and Zhi tang Li. 2007. Using Network Attack Graph to Predict the Future
Attacks. In Communications and Networking in China, 2007. CHINACOM ’07.
Second International Conference on. 403–407.

[24] Xiaobo Ma, Jiahong Zhu, Zhiyu Wan, Jing Tao, Xiaohong Guan, and Qinghua
Zheng. 2010. Honeynet-based collaborative defense using improved highly
predictive blacklisting algorithm. In 2010 8th World Congress on Intelligent Control
and Automation. 1283–1288.

[25] Guozhu Meng, Yang Liu, Jie Zhang, Alexander Pokluda, and Raouf Boutaba.
2015. Collaborative Security: A Survey and Taxonomy. ACM Comput. Surv. 48, 1,
Article 1 (July 2015), 42 pages.

[26] Pantaleone Nespoli, Dimitrios Papamartzivanos, Félix Gómez Mármol, and Geor-
gios Kambourakis. 2018. Optimal Countermeasures Selection Against Cyber
Attacks: A Comprehensive Survey on Reaction Frameworks. IEEE Communica-
tions Surveys Tutorials 20, 2 (Secondquarter 2018), 1361–1396.

[27] Dick Ourston, Sara Matzner, William Stump, and Bryan Hopkins. 2003. Ap-
plications of hidden Markov models to detecting multi-stage network attacks.
In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on. 10.

[28] Xinzhou Qin and Wenke Lee. 2004. Attack plan recognition and prediction using
causal networks. In Computer Security Applications Conference, 2004. 20th Annual.
370–379.

[29] Ali Ahmadian Ramaki, Morteza Amini, and Reza Ebrahimi Atani. 2015. RTECA:
Real time episode correlation algorithm for multi-step attack scenarios detection.
Computers & Security 49 (2015), 206 – 219.

[30] Ali Ahmadian Ramaki and Reza Ebrahimi Atani. 2016. A survey of IT early warn-
ing systems: architectures, challenges, and solutions. Security and Communication
Networks 9, 17 (2016), 4751–4776.

[31] Ali Ahmadian Ramaki, Massoud Khosravi-Farmad, and Abbas Ghaemi Bafghi.
2015. Real time alert correlation and prediction using Bayesian networks. In
2015 12th International Iranian Society of Cryptology Conference on Information
Security and Cryptology (ISCISC). 98–103.

[32] Florian Skopik. 2018. Collaborative cyber threat intelligence: detecting and respond-
ing to advanced cyber attacks at the national level. CRC Press.

[33] Jessica Steinberger, Anna Sperotto, Mario Golling, and Harald Baier. 2015. How
to exchange security events? Overview and evaluation of formats and protocols.
In 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM). 261–269.

[34] Zhi tang Li, Jie Lei, Li Wang, and Dong Li. 2007. A Data Mining Approach to
Generating Network Attack Graph for Intrusion Prediction. In Fuzzy Systems
and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on,
Vol. 4. 307–311.

[35] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel, and Richard A. Kemmerer.
2004. Comprehensive approach to intrusion detection alert correlation. IEEE
Transactions on Dependable and Secure Computing 1, 3 (July 2004), 146–169.

[36] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Math-
ias Fischer. 2015. Taxonomy and Survey of Collaborative Intrusion Detection.
ACM Comput. Surv. 47, 4, Article 55 (May 2015), 33 pages.

[37] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos Bassias,
and Ke Li. 2016. AI2: Training a Big Data Machine to Defend. In 2016 IEEE 2nd
International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
International Conference on High Performance and Smart Computing (HPSC), and
IEEE International Conference on Intelligent Data and Security (IDS). 49–54.

[38] Petr Velan, Martin Husák, and Daniel Tovarňák. 2018. Rapid prototyping of
flow-based detection methods using complex event processing. In NOMS 2018 -
2018 IEEE/IFIP Network Operations and Management Symposium.

8

http://www.ietf.org/rfc/rfc4765.txt
http://www.ietf.org/rfc/rfc4765.txt
https://www.enisa.europa.eu/activities/cert/support/information-sharing/detect-share-protect-solutions-for-improving-threat-data-exchange-among-certs/at_download/fullReport
https://www.enisa.europa.eu/activities/cert/support/information-sharing/detect-share-protect-solutions-for-improving-threat-data-exchange-among-certs/at_download/fullReport
https://www.enisa.europa.eu/activities/cert/support/information-sharing/detect-share-protect-solutions-for-improving-threat-data-exchange-among-certs/at_download/fullReport
https://www.enisa.europa.eu/activities/cert/support/information-sharing/detect-share-protect-solutions-for-improving-threat-data-exchange-among-certs/at_download/fullReport
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information/at_download/fullReport
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information/at_download/fullReport
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information/at_download/fullReport

	Abstract
	1 Introduction
	2 Related Work
	3 AIDA Framework
	3.1 Inputs and Data Distribution
	3.2 Alert Aggregation Component
	3.3 Data Mining Component
	3.4 Rule Matching Component
	3.5 Feedback Component
	3.6 REST API and Web Interface

	4 Deployment and Evaluation
	4.1 Deployment in the Alert Sharing Platform
	4.2 Configuration and Discussion
	4.3 Stand-alone Deployment

	5 Conclusion and Future Work
	Acknowledgments
	References

