BOHAČIAKOVÁ, Dáša, Marian HRUSKA-PLOCHAN, Rachel TSUNEMOTO, Wesley D. GIFFORD, Shawn P. DRISCOLL, Thomas D. GLENN, Stephanie WU, Silvia MARSALA, Michael NAVARRO, Takahiro TADOKORO, Stefan JUHAS, Jana JUHASOVA, Oleksandr PLATOSHYN, David PIPER, Vickie SHECKLER, Dara DITSWORTH, Samuel L. PFAFF and Martin MARSALA. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Research & Therapy. London: BMC, 2019, vol. 10, No 83, p. 1-19. ISSN 1757-6512. Available from: https://dx.doi.org/10.1186/s13287-019-1163-7.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
Authors BOHAČIAKOVÁ, Dáša (703 Slovakia, belonging to the institution), Marian HRUSKA-PLOCHAN (840 United States of America), Rachel TSUNEMOTO (840 United States of America), Wesley D. GIFFORD (840 United States of America), Shawn P. DRISCOLL (840 United States of America), Thomas D. GLENN (840 United States of America), Stephanie WU (840 United States of America), Silvia MARSALA (840 United States of America), Michael NAVARRO (840 United States of America), Takahiro TADOKORO (840 United States of America), Stefan JUHAS (203 Czech Republic), Jana JUHASOVA (203 Czech Republic), Oleksandr PLATOSHYN (840 United States of America), David PIPER (840 United States of America), Vickie SHECKLER (840 United States of America), Dara DITSWORTH (840 United States of America), Samuel L. PFAFF (840 United States of America) and Martin MARSALA (840 United States of America, guarantor).
Edition Stem Cell Research & Therapy, London, BMC, 2019, 1757-6512.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10601 Cell biology
Country of publisher United Kingdom of Great Britain and Northern Ireland
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 5.116
RIV identification code RIV/00216224:14110/19:00107589
Organization unit Faculty of Medicine
Doi http://dx.doi.org/10.1186/s13287-019-1163-7
UT WoS 000461323900008
Keywords in English Human embryonic stem cell (hESC); Neural stem cell (NSC); Spinal cord; Amyotrophic lateral sclerosis (ALS); Spinal traumatic injury; Bioinformatic tools to study xenografts
Tags 14110517, rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Tereza Miškechová, učo 341652. Changed: 14/4/2020 14:18.
Abstract
Background: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. Methods: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. Results: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2–6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. Conclusions: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.
Links
GJ15-18316Y, research and development projectName: Úloha microRNA v řízení buněčného dělení a diferenciace lidských embryonálních kmenových buněk do neurálních kmenových buněk. (Acronym: miRNA v diferenciaci lidských EK buněk)
Investor: Czech Science Foundation
GJ18-25429Y, research and development projectName: Funkční studie mikroRNA u nerálních kmenových buněk v průběhu diferenciace
Investor: Czech Science Foundation
PrintDisplayed: 22/8/2024 19:24