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ABSTRACT

Network segmentation is a powerful tool for network defense. In
contemporary complex, dynamic, and multilayer networks, net-
work segmentation suffers from lack of visibility into processes
in the network, which results in less strict segment definition and
loosen network security. Moreover, the dynamics of the networks
makes the manual identification of network segments nearly im-
possible. In this paper, we inspect the possibilities of the behavior-
aware network segmentation using IP flows and machine learning
approaches that would enable to identify segments automatically,
even in a complex network. We evaluate the suitability of clustering
algorithms for identification of behavior-consistent segments in a
network. We show that the clustering algorithms can identify rele-
vant behavior-consistent clusters that overlap with those identified
manually by experts. Apart from the segment identification, we in-
vestigate the other essential task of network segmentation process:
assignment of an unknown host to an existing segment. We eval-
uate the performance of four different classification mechanisms
on a real-world dataset. We show that it is possible to assign an
unknown host to an appropriate network segment with up to 92%
precision. Moreover, we release the whole dataset and experiment
steps available for public use.
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1 INTRODUCTION

Network segmentation has proven to be an effective strategy for
network defense. It limits the impacts of network intrusion and
improves network security. Using the firewall and routing rules, the
network segmentation divides a network into smaller sub-networks
that include hosts with common risk profiles [9], e.g., isolates de-
velopment and production systems from each other. With the emer-
gence of dynamic cloud environments, the high-granular segmen-
tation often referred to as micro-segmentation has become vital
for maintaining the network’s security. The micro-segments can
contain only a few hosts with similar privileges or can be limited
even to individual applications.

A fundamental task in the segmentation process is a definition
of rules for assigning hosts into network segments. For example,
segmentation can be based on the intention-based security [12], or
on the identification of data flows in a network [9]. The intention-
based security assigns hosts to segments based on their behavior,
while the latter approach identifies significant data flows in a net-
work and the segments are aligned with these data flows. The
above-mentioned approaches for assigning the hosts into network
segments are facing several challenges when used in the context of
contemporary complex and dynamic network environments, e.g.,
IoT networks. The complexity of these environments, the number
of the connected hosts, and the dynamics of the networks (e.g., au-
tomated instance deployment) make it nearly impossible to create
rules for the segmentation manually. Moreover, there is usually lim-
ited access to the hosts in the network, which reduces the visibility
into relations in the network and hinders the collection of infor-
mation needed for the segmentation decision. The lack of network
visibility, network dynamics, and the number of hosts in a network
results to a less strict definition of a segment and looser firewall
rules, which opens potential sideways for adversaries to break out
from a segment.

Visibility into a network, even into the complex one, can be ob-
tained via passive network monitoring techniques. IP flow network
monitoring is an effective passive monitoring technique to gain
visibility in large-scale, high-speed networks [11]. An IP flow is an
abstraction of a network connection that includes information from
packet headers on who is communicating with whom, for how long,
and on which ports, etc. IP flows can be observed at centralized
observation points in a network with no necessity to access the
monitored hosts. Nevertheless, the number of observed IP flows is
still too high to be manually analyzed to determine relations in a
network and to provide a basis for segmentation rules definition.
Moreover, the IP flows represent a connection in a network, while
for the host behavior-based segmentation, a host-oriented view on
network traffic is required.

While the IP flow network monitoring can provide the desired
visibility into a network, the rules for network segmentation still
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need to be derived from the IP flows. Due to the volume of the IP
flows (over thousands of IP flows per second in a mid-sized net-
work), the derivation of the rules from IP flows becomes a big data
problem, where a manual identification these rules is non-effective.
Machine learning methods for automated relation discovery are
expected to be suitable tools for the rules derivation from IP flow
data.

The general goal of this paper is to explore the possibilities of
utilizing machine learning techniques on information from IP flows to
create behavior-consistent network segments. Specifically, we propose
the following hypotheses:

(1) The network can be divided into behavior-consistent network
segments using machine learning techniques.

(2) It is possible to assign an unknown host to an existing network
segment based on its behavior.

The Hypothesis 1inspects, whether IP flow data contains behavior-
consistent network segments that can be identified using machine
learning, namely clustering, techniques. The discovery of such
segments would enable to define segmentation rules that would
reflect intention-based security network segmentation principles.
Having defined the segmentation rules, the Hypothesis 2 inspects
approaches that can be used for assigning an unknown host to an
existing segment using its behavior profile created from informa-
tion retrieved via IP flow network monitoring. The evaluation of
both above-mentioned hypotheses is carried out on the real-world
data from the campus network.

The major contributions of this paper are four-fold: (1) we iden-
tify relevant features from IP flow network traffic that are suitable
for host behavior modeling and can be used for network segmen-
tation, (2) we shed light on possibilities of using clustering tech-
niques on the selected features for creating a behavior-consistent
segments and evaluate the resulting segments, (3) we compare and
evaluate several classification techniques that can assign a previ-
ously unknown host to an existing segment, and (4) we make all
our experiments and data available for research re-evaluation in a
public repository.

The remainder of this paper is organized as follows. Section 2
describes the methodology used to examine the defined hypotheses,
including problem description, algorithm selection, dataset descrip-
tion, and evaluation approaches. The network segment discovery
is inspected in Section 3, and the network segment assignment is
addressed in Section 4. Both sections describe the model training,
results of the application of the relevant machine learning tech-
niques to the defined problem, and the discussion of the results. The
related works are presented in Section 5. and Section 6 concludes
the paper.

2 METHODOLOGY

This section describes in detail our approach to test our hypotheses.
First, we describe the problems that our hypotheses refer to. Next,
we describe a dataset used to test hypotheses. Based on the prob-
lem and the dataset description, we select and describe relevant
algorithms that would enable to accept or reject the hypotheses.
Last, we define methods for algorithm evaluation, which enables
us to draw the conclusion on the hypotheses.
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2.1 Problem description

Hypothesis 1 aims to face a problem of network segment discov-
ery. For a defined network range, we want to identify behavior-
consistent clusters of machines that can be transformed into net-
work segments. There is no prior knowledge of the network organi-
zation, no information on hosts in a network, or what services are
provided on the network. The only information available is the IP
flows obtained from the central network monitoring system. This
setup reflects a not so rare situation of a computer security incident
team that wants to introduce or revise the network security seg-
mentation for a company. The company’s network is divided into
many subnets with various administrators, documentation of the
networks and services are outdated or are not available, so there
is only a little information on the hosts in the network at hand for
the team. We are aware that in reality, some fragments of other
information or data sources are usually available. Nevertheless, we
choose the above-described simplified setup where only IP flows are
available as it does not pose any other assumptions on information
available and should work in the majority of real-work scenarios.

Given the above-described setup, we face the following chal-
lenges when testing Hypothesis 1. First, we need to transform the
connection-oriented IP flows to host-oriented view on the network
and select relevant features for network segment discovery. Second,
we need to identify algorithms for segment discovery concerning
their suitability for the given problem and expected performance.
Next challenge is to determine a suitable number of segments to
create. The optimal number of segments can be determined based
on a given measure, e.g., the similarity of the behavior of all hosts
within the selected segment, or a distance between the identified
network segments.

Hypothesis 2 aims to inspect the problem of network segment
assignment. Given the existing network segmentation, we want to
categorize a new host that connects to a network into an existing
network segment. This setup is an analogy to a situation, when an
employee brings own device and connects it to a computer network
or when a new virtual host is provisioned in a cloud environment,
and security firewall rules need to be determined for this host.
The host can be first placed into "quarantine” segment, where its
behavior is observed, and then the host is allocated into existing
segment according to its observed behavior and firewall rules are
set based on the existing segment policies.

The main challenge for the above-described setup for Hypothe-
sis 2is to determine the suitable algorithm for the host assignment
to a network segment. The algorithm should be able to assign new
hosts to the correct segment based on their network behavior and
minimize the number of host misplacement. Moreover, the algo-
rithm should be general enough to be able to place the majority of
the connecting host into a segment.

2.2 Dataset

Dataset used to test the hypotheses was collected over one month
period in January 2019. The observation points for the collection
of IP flows were located at the borders of the university campus
network. The campus university network has /16 CIDR IPv4 net-
work range at disposal and contains various network segments
from segments connecting dormitories, over server segments, to a
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segment containing working stations of university administrative
workers. The size of the raw IP flows used to create the dataset was
over 860GB. A host in our dataset is identified by its source IPv4
address.

2.2.1 Features. First, we identified features that represent host be-
havior and are retrievable from IP flows. Moore et al. [18] presented
a list of IP flow features that can be used for IP flow based classifi-
cation. We considered features that represent host behaviors. The
selected features are presented in Table 1. Since we are interested
in the host’s behaviour, all features represent traffic that originates
at the host.

Type Name Aggregation
Aggregations  # of flows (FL) src IP
# of packets (PKT) src IP
# of bytes (BYT) src IP
Flow duration (DUR) src IP
Distinct # of peers (PEER) src IP, dst IP
counts # of ports (PORT) src IP, dst ports
# of protocols (PROTO) src IP, dst ports
# of AS numbers (AS) src IP, dst AS number
# of countries (CTRY) src IP, dst country

Table 1: Host-related IP Flow Features

For each of the selected features, we computed a 24 dimen-
sional vector, where each vector element represents a given hour
in a day for each host and each day in the observed month, i.e.
FL(]-’k) = (fl(j,k),h . ’fl(j,k),24) where j = 1,...,65536 is host
identification,and k = 1,...,31isaday in January. The aggregation
features sums the given feature a given variable over the given hour
interval, i.e. f1; )1 = X(all flows with src IP = host j in hour 1 of
day k). The distinct count features counts unique pairs described in
Aggregation column of Table 1 over the given hour, i.e. peer(; ) 1 =
number of unique pairs (src IP of host j, dst IP) in hour 1 of day k.
For the aggregation of the values for a given hour and host over the
month, we used only business day to avoid weekend bias. Then max-
imum, minimum, and average functions were applied to get only
one value for a given hour and host, i.e. fl;‘;g =1/n 37, flij
for average, and fl]’"l”’ = min{fl; )1,k = 1,...,n} for min-
imum, where n is a number of business days in January 2019.
The resulting dataset contains following tuples for each of the
selected features: (FL;vg,FL;"i",FL;”“X),j =1,...,65536 where

FL;.Wg = (fl]‘.”ljg, e fl;nz)f), and FL;.’”", FL;."“X analogously. This
results in 648 features for each observed host. The observed features

for a sample host are depicted in Figure 1.

2.2.2  Labels. All hosts in the dataset were labeled to be able to
test the Hypothesis 2. We retrieved the list of existing segmentation
of our campus network manually maintained by local CSIRT team.
The existing segmentation contains the list of IP network ranges
along with the description of the administrative unit and subunit to
which a segment belongs. The labels contain 596 network ranges
operated by the 22 different administrative units. Since the list of
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Figure 1: Observed Features for a Sample Host

the segments is manually operated and updated, it does not cover
all hosts in university /16 network address range.

The obtained list was cleaned - all labels were converted to lower
case to remove duplicity, we removed white spaces, and united the
contact format. All hosts from the dataset were assigned with the
labels according to a subnet from the list they belonged to. The hosts
that did not fit into any network range in the list were labeled with
NA values. Available labels for hosts in our datasets are summarized
in the Table 2.

Name Description
Range (RNG) A network range a host belongs to
Unit (UNT) An administrative unit owning the

network range
Sub-unit (SUB-UNT) An sub-unit of the unit
Contact (CONT) Contact to an administrator

Table 2: Dataset Labels

2.2.3  Preprocessing. The raw dataset created from IP flow was
further preprocessed so it could be used for machine learning tasks.
First, we removed missing values and outliers. Next, we standard-
ized the numerical variables and sampled the unit counts to provide
a balanced dataset. Last, we anonymized values in the dataset so it
could be publicly released.

The dataset contained two types of missing values before pre-
processing: the host’s records with missing labels and records with
labels but missing from one to all observations. There were 6 016
hosts of all hosts in /16 range (9.18 %) with missing labels, and
28 012 hosts with missing values in all features but labels (42.74 %)
(i.e. hosts that were assigned to a subnet but did not communicated
during the whole observation period). All these records were re-
moved from the dataset leaving 31501 hosts in the dataset. These
hosts communicated at least once during the observation period.
Other missing values, e.g., missing observations in only one hour,
were replaced with zeros.

Next, we removed outliers observations from the dataset using
the 0.95 quantile threshold. Having removed the extreme values,



ARES ’19, August 26-29, 2019, Canterbury, United Kingdom

we standardized the dataset as the standardization improves the
performance of distance-based clustering techniques. Each feature
was scaled to zero mean and unit variance. During the exploration
analysis of the dataset, we discovered, that 44.45% hosts belongs
to the one unit, while shares of other units were about 4%. Hence,
we undersampled this unit to achieve a more balanced dataset for
clustering. We employed a random approach where we randomly
pick records from the majority class to reduce it to 25% of its original
size.

Last, we anonymized the dataset for public use. The host’s IP ad-
dresses were hashed, and so were the network ranges. Further, we
removed labels containing the contact information for a network
subnet administrator. We share the anonymized dataset with the

public at https://github.com/CSIRT-MU/BehaviorNetworkSegmentation.

2.3 Algorithms

The description of the problems linked to our hypotheses displays
that there are two different algorithms needed. While the problem
of Hypothesis 1 suggests to use clustering algorithms as the task is
to divide the hosts into previously unknown clusters, the problem
related to Hypothesis 2 implies a classification task where an item
(a host) needs to be assigned to the one from the existing cate-
gories (segments). Hence, we provide a description of the algorithm
selection process and the algorithm’s basics for each hypothesis
separately in the paragraphs below.

2.3.1  Network Segment Discovery Algorithms. For the network seg-
ment discovery task, we apply clustering algorithms. We choose
to employ the K-Means [17] and Density-based spatial clustering of
applications with noise (DBSCAN) [8] algorithms as both algorithms
can process data with a high number of samples, are commonly ap-
plied in wide range of applications, and provide a different approach
to the determination of the number of the cluster. The K-means
algorithm needs to specify the number of clusters a priori, while
the DBSCAN does not need such information and estimates the
number of clusters by itself.

K-Means algorithm aims to divide set on n samples X into k
disjoint groups C with equal variance while minimizing the intra
sum of squared criterion [2]:

n
> min (|l xi i ) (1)
i=0 Hi€C

The iterative process repositions the initial cluster centers to be
in the center of the updated clusters created by assigning points
to its nearest cluster center. The above-mentioned implementation
uses Euclidean distance and takes each feature to determine a dis-
tance from a cluster center. However, in our setup, where a feature
a vector of 24 values, the Euclidean-based K-means can suffer from
the curse of the dimensionality.

Hence, we decided to investigate also an alternative approach
and handle the features as a time series. This approach reduces
the dimension to the number of features. We used Dynamic Time
Wrapping (DTW) method [4], specifically LB_Keogh distance mea-
sure [15] to determine a distance from the cluster center. Such
that, we can cluster the features as time series using the K-Means
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algorithm. We expect an improved performance compared to sim-
ple K-Means as the time series approach takes time causality into
account.

DBSCAN algorithm creates the clusters based on the distance to
the points in the neighborhood. The DBSCAN algorithm requires
the size of the neighborhood € and the minimum number of points
in a neighborhood minPts. DBSCAN algorithm can be simplified
as [25]:

(1) For arandom non-noise point retrieve e-neighborhood. If the
neighborhood contains more than minPts points, a cluster is
started. Otherwise, the point is marked as noise.

(2) All points from the e-neighborhood are part of the cluster,
and so are points in their e-neighborhood. This process con-
tinues until the whole cluster is found.

(3) A new unvisited random non-noise point is selected, and the
process restarts.

The advantage of the DBSCAN is that it does not require to
define the number of the cluster as input. Moreover, it is robust to
outliers and can find arbitrary shaped clusters, compared to linear
cluster separation used in K-Means.

2.3.2  Network Segment Assignment Algorithms. The segment as-
signment task used to test Hypothesis 2 implies the application of
the classification algorithms. We choose to employ k-nearest neigh-
bors (KNN), support vector machine (SVM), and decision trees (DTs)
algorithms to label new host into an existing segment based on its
behavior. These algorithms are selected to be the representatives
of the common approaches to classification tasks.

K-nearest neighbors [7] assigns a new object by a plurality vote
of it’s k neighbors. During the training phase, the algorithm stores
the class labels and feature vectors of the training objects. During
the classification of an object, the algorithm searches the k-nearest
objects to the classified object based on the given distance measure.
Analogous to clustering algorithms, we employ both Euclidean
distance and Dynamic Time Wrapping with LB_Keogh distance.
The number of neighbors k used to classify a new observation need
to be determined as input and influences the performance of the
classification algorithm. The optimal number of the neighbors can
be determined from the comparison of prediction error rate and
k-value. Usually, there exists a threshold for k, beyond which there
is not a significant drop in the error rate.

Support vector machine classification [6] constructs a set of
hyper-planes with the largest distance to the nearest training data
points of any class. These planes are then used for the classification
of the new object. The larger distance from the data points, the
lower is the error of the classifier. SVM is usually used as a non-
probabilistic binary linear classifier. Nevertheless, the non-linear
classification is possible as well by using the kernel trick that maps
the input feature vector into high-dimensional space where hyper-
planes can be found.

Decision tree classifiers are a non-parametric method that creates
a tree-like model where each leaf node represents a class label.
The classification rules are then paths from the root to a given
node. The advantages of the decision trees are that they are simple
to understand, require little data preprocessing leading to better
performance on datasets with violated assumptions, and they can
handle multi-output problems. The disadvantage of the decision
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trees is that they are unstable as a small variation in the data can
result in a different decision tree. The optimal decision tree is the
tree that has greater coverage while minimizing the number of
levels.

2.4 Evaluation

The evaluation of the algorithm performance is conducted sepa-
rately for classification and clustering tasks.

The evaluation of the clustering algorithms does not implicitly
require labels in the data. The clusters can be evaluated with respect
to their density, homogeneity, or inter-cluster distance, for example.
Nevertheless, when original labels are available, there exist metrics
to compare original labels with the original clusters.

For the evaluation, where no labels are available, we employ
the Silhouette score [23], to show the clustering performance. The
Silhouette coefficient uses the mean intra-cluster distance a and
mean inter-cluster distances b. The coefficient is computed as:

b—a
5= max{a, b} @

The Silhouette coefficient return values in < —1,1 >. Negative
values of the coefficient imply that the sample has been assigned
to the wrong cluster, values near 0 mean overlapping clusters and
values near 1 indicate the best clustering results.

Using the labels, we evaluate clustering methods using the ad-
Jjusted Rand index [22]. The Rand index (RI) is used to compare two
clusterings. It takes all pairs of samples from the compared clus-
terings and counts pairs assigned to the same or different clusters.
The Rl is dent adjusted for permutations to compare the clustering
to random clustering as:

RI — expected_RI

ARI = 3
max(RI) — expected_RI ®)

The ARI is expected to return values around 0 for random label-
ing, negative values independent clustering and values close 1 for
the exact match for between the clusterings. Assuming that one of
the compared clusterings are the actual labels, we can compare the
clustering results to the real-world state.

For the evaluation of the classification methods, we first split
our dataset to train and test data sample in 80 : 20 ratio. The train
and test samples are chosen randomly from the original dataset.
The classification model is estimated on the train data set and then
applied to test dataset to predict the labels. The predicted and ac-
tual labels of the testing dataset are compared, and the precision,
recall, and F-score metrics are computed. The overview of the algo-
rithms used to test hypotheses and their evaluation methodology
is provided in Table 3.

3 NETWORK SEGMENT DISCOVERY

3.1 Model Training

Both algorithms for testing Hypothesis 1 were applied on the whole
data set described in Section 2.2.

For the K-Means algorithm, we determined the number of clus-
ters parameter by taking the total amount of administrative units in
our data set, i.e., 22. This choice allowed us to evaluate the results
against the ground truth representing the real-world segmentation
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Hypothesis Algorithms Evaluation

K-Means Silhouette (s),
Hyp. 1 K-Means with LB_Keogh DTW  adj. Rand index
DBSCAN (ARI)
KNN precision
Hyp. 2 E\I;II\IX with LB_Keogh DTW recall
DTs F-score

Table 3: Methodology Overview

by the administrative units. The initial cluster was selected ran-
domly, and the maximum number K-Means iterations was set to 300.
K-means with LB Keogh as a distance metric is computationally
difficult. Therefore we limited the maximum number of iterations
to 30.

The training the DBSCAN required to determine values for € and
minPts. We began by taking minPts = 2 * number_of _features
and then computing e by running KNN algorithm with k = minPts
as suggested in [25]. The Figure 2, we plotted a graph of distances to
k nearest neighbors in ascending order and chose € by recognizing
an elbow point at a distance equal to 160.

480 -
400 A

320 1

Distance

240 A

0 1000 2000 3000 4000 5000

Figure 2: ¢ selection from KNN distances

However, these parameters did not lead to the identification
of coherent and clear clusters. Therefore we shifted to parameter
grid search to determine which parameters show the best results.
We performed multiple grid searches, then gradually refined the
grid parameters according to the accuracy of the results. Initial
grid search parameters were: minPts = [25,50, 100, 200,400], € =
[1,2,4,8,16,32,64, 128]. The grid search settled with minPts set to
40 and € set to 5.

Dynamic time warping is generally computationally expensive
with its O(nm) time complexity, n(m) being the length of the first
(second) times series. LB_Keogh provides an improvement in speed.
It takes in parameter r (reach). Based on our findings we decide to
setr = 5.
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3.2 Results

The results of network segment discovery are presented in Table 4.
The Silhouette coefficient for all clustering algorithms suggests that
there are overlapping clusters present. The DBSCAN algorithm
provides the best clustering results. For the K-Means algorithm, the
overlapping clusters can be explained by the fact, that k = 22 was set
to the total number of the administrative units. Since the adminis-
trative units represent the organizational division of the network, it
is possible, that in reality, there are less behavioral-based clusters in
the network. Given the higher number of the administrative-based
clusters and lower number of the actual behavior-based clusters, it
is natural, that the identified clusters will overlap. This reasoning
is supported by the fact, that DBSCAN algorithm estimated the
optimal number of behavior-based clusters to 7.

Considering the ARI metrics, that compares the estimated cluster-
ing with the ground truth clusters, DBSCAN algorithm performed
even an independent clustering from the ground truth. The best
performance with ARI equal to 0.3 was recorded by the K-Means
algorithm. These results reflect the fact that there are hosts with
similar behavior presented in multiple administrative units. When
considering the hour features as individual variables, the similar-
ity among hosts over multiple administrative units is higher than
when a feature is taken as the a time series of 24 observation in
LB_K_DTW clustering.

Algorithm Silhouette ARI
K-Means 0.02 0.30
K-Means_LB_K-DTW 0.07 0.16
DBSCAN 0.08 -0.13

Table 4: Network Segment Discovery Results

3.3 Discussion

The results computed on the dataset representing the whole net-
work show that the clustering algorithms tend to identify lover
number of behavioral clusters in the network compared to the num-
ber of logical segments identified in the network. When the number
of the cluster to create is set to be equal to the (higher) number of
the segments presented in a network, the clusters overlap. Hence,
the behavior-based network segmentation based on clustering is
suitable for networks, where segmentation to a lower number of
segments is sufficient.

Given the results above, we decided to further inspect the per-
formance of the clustering algorithms on the subset of a given
network. From the original dataset, we selected five administrative
units (reduced segment), that has different agenda and purpose, e.g.,
a segment for cloud computing, faculty segment, a segment for bu-
reaucracy services, etc. Hence, the behavior of the hosts is expected
to be more different from each other. To test an extreme case, when
a segmentation to only two segments is required, we also tested
the binary clustering (binary segment on two selected segments
from the original dataset. The results of our further analysis are
presented in Table 5.

Considering the clustering evaluation without labels, the Sil-
houette coefficient did not improve significantly. However, we can
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Segment Algorithm Silhouette ARI

Reduced  K-Means 0.001 0.92
K-Means_LB_K-DTW 0.13 0.22
DBSCAN 0.19 -0.04
Binary K-Means 0.001 0.95
K-Means_LB_K-DTW 0.03 0.13
DBSCAN 0.001 -0.14

Table 5: Reduced Segment Discovery Results

observe major improvement in values of the adjusted Rand Index
that compares the estimated clustering with the clustering based
on real-world labels. Both for reduced and binary segments, the
ARI for K-Means is near one (0.92, 0.95 respectively), which implies
near-perfect match with the label-based clustering. We explain the
major improvement by the setting the lower number of clusters
k for K-Mean compared to the original experiment on the whole
dataset and making it equal to the number of labels. So, the algo-
rithm can perform reasonable clustering aligned with real-world
settings.

4 NETWORK SEGMENT ASSIGNMENT
4.1 Model Training

KNN algorithm uses classes of k nearest neighbors of new data
point to classify it by majority voting. Since it is difficult to estimate
this parameter in advance accurately, Figure 2 shows the process of
finding the elbow point on a graph by plotting various choices of k
against the error rate. We settled with k = 5, since higher values
did not provide significantly better classifier accuracy.

050
049
048
047

Error Rate

046
045

044

25 50 75 100 125 150 175 200
K values

Figure 3: KNN - Error Rate vs. k values

Regarding SVM, we used a polynomial kernel with a degree of
3. Penalty parameter, C, and kernel coefficient, gamma, were both
picked by executing grid search. Grid parameters were set as fol-
lowing: C = [1, 1071,1072,1073], gamma = [auto, 1,0.1], kernel =
[rbf,polynomial]. C = 0.01 and gamma = 1 provided the most ac-
curate results. We did not set a hard limit on number of iterations
and all classes had weight set to 1.

When implementing DTs we chose the following parameters:
Gini impurity as criterion to measure split quality, bestsplit as



Behavior-Aware Network Segmentation using IP Flows

splitting strategy, maximum features to consider when splitting
node set to number of all available, we did not set any max_depth of
the tree, minimum number of samples required to split an internal
node was set to 2, minimum samples required to be a leaf node was
set to 1.

4.2 Results

The results for the classification of an unknown host to an exist-
ing segment using machine learning techniques are presented in
Table 6.

In general, the classification algorithms were able to correctly
classify around 50% of hosts that according to the ground truth
belonged to a given segment. The best recall was observed for the
SVM algorithm. The SVM also showed the best where 62% of the
hosts assigned to a segment belonged to the segment according
to the labels. The worst results showed the KNN with LB_Keogh
DTW metric, which suggests that time causality captured by this
similarity measure is not essential for clustering hosts by their
behavior.

Algorithm Precision Recall F-Score
KNN 0.56 0.52 0.52
KNN_LB_K-DTW 0.40 0.41 0.36
SVM 0.62 0.62 0.60
DTs 0.61 0.61 0.61

Table 6: Network Segment Assignment Results

The precision and recall near 50% can be explained by the fact
that the labels were obtained from the administrative-based seg-
mentation of the network. The administrative segments represent
logical segregation of a network and do not entirely reflect the
behavior-based network segmentation. Hence, hosts with similar
behavior are present in multiple administrative segments. For the
classification mechanism is then hard to identify a robust segrega-
tion rule, that would assign these hosts to the right cluster.

4.3 Discussion

As discussed above, the lower performance of the classification
methods applied on the dataset is explained by the facts that the
administrative segregation does not entirely reflect the behavior-
aware segmentation of a network. The noise into the in classifica-
tion process is introduced mainly by a small and "fuzzy" adminis-
trative units present in our dataset.

To inspect the performance of the classification methods in detail,
we decided to run the experiment on the dataset, where the noise of
the small administrative units is removed. Analogous to the network
segmentation identification experiment, we selected a subset of 5
network segments (reduced segment), where both administrative-
based and behavior-based segregation overlap. Using this subset,
we reviewed the results of all clustering algorithms except the
KNN_LB_K-DTW as the time causality aware measure showed
as unnecessary in original results. Analogously, we executed the
experiment of binary classification where hosts were assigned to
two different network segments (binary segment). The results of
our further analyses are presented in Table 7.
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Segment Algorithm Precision Recall F-Score

Reduced KNN 0.75 0.74 0.74
SVM 0.82 0.81 0.81
DTs 0.78 0.78 0.78
Binary KNN 0.87 0.87 0.87
SVM 0.90 0.90 0.90
DTs 0.92 0.92 0.92

Table 7: Reduced Segment Assignment Results

We observe that the performance of the classification methods
on the reduced segment improved significantly. The hosts from
the classified host, the 82% were classified to the correct cluster
with 81% recall in the case of SVM. For the binary classification,
the best performance showed the DT algorithms with the precision
and recall of 92%.

5 RELATED WORKS

Techniques for network traffic classification using machine learning
tools are surveyed by Nguyen and Armitage in [19]. The authors
describe techniques both for clustering and classification of network
traffic and identify challenges for operational deployment of the ML
tools. Buczak and Guven surveys machine learning techniques for
cyber security intrusion detection in [5]. Besides the inspection of
ML methods for cyber security, the survey also provides information
on the analysis workflow and cyber security data sets.

The majority of the previous works focus on the profiling net-
work behavior of individual hosts [3, 10, 26], their classification [14,
16] and clustering [21]. The authors of [10] use the change point
detection techniques and the indicator of "freshness" to cluster the
hosts according to its different activities over time. IP flow records
are used as a data source, and the authors test their approach to
modeling the different behavior of botnet hosts from real-world
data observation. IP flow statistics are also used for user behavior
identification in [3]. Author record user behavior of 43 users as they
are using nine different applications (e.g., Youtube, Facebook) in
the form of IP flows. Using statistical aggregations such as average,
skewness, or variance mean ratio, they aim to devise rules for host
behavior identification. For that task, they employ SVM with recur-
sive feature extraction with over 80% average accuracy to identify
application a user is using. Xu et al. [26] proposes a new perspective
to profiling network host by identification of behavior clusters of
hosts in the same network prefixes. They create bipartite graphs of
network communications with one node projection and supplies
them to the spectral clustering algorithm to discover behavior clus-
ters in network blocks. Applications in domains such as network
traffic pattern discovery or detection of anomalous behavior are
presented.

BLINC [14] is a tool for the identification of host behavior pat-
terns at the transport level. It analyses host patterns at three levels
- the social, functional, and application level. The authors of the
tool impose additional constraints on the source data such as no
access to the payload or the fact that well-know port does not
have to link to the application directly. For the classification, they



ARES ’19, August 26-29, 2019, Canterbury, United Kingdom

employ cumulative distribution functions and bipartite graphs for
modeling host social behavior, and graphlets for application level
host modeling. The BLINC is claimed to classify approximately
80% flows with 99% accuracy. Performance of various machine
learning techniques for host roles classification is evaluated in [16].
The authors try to classify hosts to different binary groups, e.g.,
client vs. server, web non-email server vs. web email server, or the
personal office vs. public place connected host. The compared ML
techniques are on-line SVM and decision trees on the data retrieved
from sFLows. Qin et al. describes a multilevel user cluster mining
(MUCM) to identify user cluster in the monitored network with
different lengths of network prefixes in [21]. The clustering uses
user’s behavior similarity measure, adaptive selection of weights
and K-Means to identify the clusters in the network segment. The
identified clusters are further analyzed from different perspectives.
Authors analyze the number of users in the clusters, traffic volumes
per cluster, user’s behavior dynamics. Application of the clustering
on botnet detection is demonstrated in this paper.

The related works on the identification of host communities, or
network segments include [1, 13, 20, 24]. Proenga et al. create a
digital signature of the network segments using real-world data
in [20]. The digital signature is computed BLGBA algorithm that
takes the distribution of elements in frequencies based on the dif-
ference between the greatest and smallest element in a sample.
In [1], the authors explored the possibilities of identification of the
maximal cluster of hosts based on the proposed data fusion and
clustering algorithms. They aim to create a cluster of hosts whose
network behavior is similar with regards to intrusion detection. For
the identification of intrusion flows of a host, the authors employed
supervised learning algorithms such as Decision Trees, KNN, and
SVM. Jakalan et al. propose a methodology of supervised cluster-
ing of IP addresses based on IP communication structure in [13].
For clustering, they create bipartite networks from IP flow record,
apply one-mode projection, and build a social similarity graph of
the inside IP addresses. Network segregation for Industry 4.0 is
investigated in [24]. The authors identify communication patterns
in an Industry 4.0 Cyber-Physical Production Systems. They apply
DTs, Naive Bayes, Bayesian network, SVM, and KNN on the man-
ually labeled dataset to learn the regularities in communication
pattern. The communication patterns are used to classify the hosts
into segments in the network.

6 CONCLUSION

The primary goal of this paper was to explore the possibilities of
utilizing machine learning techniques on information from IP flows
to create behavior-consistent network segments. In the paper, we
describe relevant features for host behavior modeling, including
the formal description of their retrieval from IP flow records, their
preprocessing. From these features, we create an annotated dataset
that is used to evaluate further hypotheses.

Having created the dataset, we evaluated three clustering tech-
niques to test the hypothesis that a network can be divided into
behavior-consistent network segments using machine learning
techniques. Our findings showed that it is possible to cluster net-
work into behavior-consistent segments. However, we discovered
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that the number of behavior-consistent clusters identified in a net-
work is significantly lower than the number of administrative-based
clusters. Compared to real-world settings, the clustering identifies
a lower number of network segments. Hence, the clustering ap-
proach is suitable when a lower number of network segments is
sufficient for real-world network segmentation. When we tested
the clustering methods on a set of administrative units that are
also behavior-consistent, then the clustering performed well and
identified nearly the same clusters as were the administrative ones.

Next, we test the hypothesis, that it is possible to assign an un-
known host to an existing network segment based on its behavior.
Using the identified host behavior features, we employed three clas-
sification algorithms to test this hypothesis. We discovered that the
precision and recall of the classification algorithms used for classi-
fication to all administrative clusters present in the dataset are 62%
at best as the behavior characteristics of hosts in different admin-
istrative units overlaps. Further analysis, where we selected only
behavior-different administrative units showed, that the precision
can reach the rate of 92% correctly classified hosts.

Our further research will include the identification and investi-
gation of additional host behavioral features, that can be retrieved
from IP flow records. We will mainly focus on application level in-
formation present in the IP flow records. We aim to inspect further
characteristics of host features that may influence network seg-
ment identification and assignment, the stability of host behavior
in time, for example. We also plan to evaluate the deep learning
classification approaches as they are becoming the mainstream in
classification research.

The analyzed dataset, including all executed experiments in
the form of Jupyter notebooks, is available in public repository at
https://github.com/CSIRT-MU/BehaviorNetworkSegmentation to
enable a complete re-validation of our research.
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