Detailed Information on Publication Record
2019
Thermal efect of irreversible electroporation a high-frequency irreversible electroporation inside metallic stent ex vivo
JŮZA, Tomáš, Tomáš ROHAN, Peter MATKULČÍK, Dalibor ČERVINKA, Veronika NOVOTNÁ et. al.Basic information
Original name
Thermal efect of irreversible electroporation a high-frequency irreversible electroporation inside metallic stent ex vivo
Authors
JŮZA, Tomáš (203 Czech Republic, guarantor, belonging to the institution), Tomáš ROHAN (203 Czech Republic), Peter MATKULČÍK (703 Slovakia, belonging to the institution), Dalibor ČERVINKA (203 Czech Republic), Veronika NOVOTNÁ (203 Czech Republic), Vlastimil VÁLEK (203 Czech Republic, belonging to the institution) and Tomáš ANDRAŠINA (703 Slovakia)
Edition
CIRSE 2019, 2019
Other information
Language
English
Type of outcome
Konferenční abstrakt
Field of Study
30224 Radiology, nuclear medicine and medical imaging
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 2.034
RIV identification code
RIV/00216224:14110/19:00110837
Organization unit
Faculty of Medicine
ISSN
Keywords in English
irreversible electroporation; high-frequency irreversible electroporation; thermal effect; metal stent
Tags
Tags
International impact
Změněno: 21/4/2020 11:16, Mgr. Tereza Miškechová
Abstract
V originále
Purpose: To compare electrical and thermal parameters of irreversible electroporation (IRE) and high-frequency irreversible electroporation (H-FIRE) using tubular electrode prototype in biliary metal stent. Material and methods: 3-electrode tubular catheter prototype was placed inside metallic biliary stent in ex vivo porcine liver model. 3 scenarios of stent occlusion using 2±1 mm thick piece of liver parenchyma were simulated. Only 2 electrodes were active in each time. IRE were performed by one hundred pulses at voltages 300V, 650V, 1000V and 1300V with 100 us pulse length. H-FIRE is a newer modifcation of electroporation methods using, in our case, 100 us burst of alternating polarity pulses of 2,5; 5; 10 and 25 us length, pause between pulses 0,5, 1 and 1,5 seconds with the same voltages as IRE. Values of electric current were measured. Thermal efects were monitored by infrared thermal imaging camera. Results: IRE and H-FIRE procedures were feasible in all settings with simulated obstruction of the voltages of 300 and 650V and in most of the cases with 1000 V. In higher voltages the safety limit of generator (12A) were exceeded. No signifcant diference in heating between IRE and H-FIRE was observed (p=0,49, Mann-Whitney). Maximal temperature increase in both methods was 7°C at 1000 V in model with one electrode in direct in contact with the stent and the other one with simulated obstruction. Conclusion: No signifcant diferences in thermal efects between IRE and H-FIRE delivering comparable amount of energy in metal stent were observed.
Links
MUNI/A/0996/2018, interní kód MU |
| ||
MUNI/A/1574/2018, interní kód MU |
|