Detailed Information on Publication Record
2019
Bioinformatic pipelines for whole transcriptome sequencing data exploitation in leukemia patients with complex structural variants
HYNŠT, Jakub, Karla PLEVOVÁ, Lenka RADOVÁ, Vojtěch BYSTRÝ, Karol PÁL et. al.Basic information
Original name
Bioinformatic pipelines for whole transcriptome sequencing data exploitation in leukemia patients with complex structural variants
Authors
HYNŠT, Jakub (203 Czech Republic, belonging to the institution), Karla PLEVOVÁ (203 Czech Republic, belonging to the institution), Lenka RADOVÁ (203 Czech Republic, belonging to the institution), Vojtěch BYSTRÝ (203 Czech Republic, belonging to the institution), Karol PÁL (703 Slovakia, belonging to the institution) and Šárka POSPÍŠILOVÁ (203 Czech Republic, guarantor, belonging to the institution)
Edition
PeerJ, London, PEERJ INC, 2019, 2167-8359
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
30204 Oncology
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 2.379
RIV identification code
RIV/00216224:14740/19:00108521
Organization unit
Central European Institute of Technology
UT WoS
000471213700009
Keywords in English
Chromothripsis; Complex structural variants; Fusion gene; Gene expression; Bioinformatic pipeline; Next-generation sequencing; Leukemia; Transcriptomics; Chronic lymphocytic leukemia; Statistics
Tags
International impact, Reviewed
Změněno: 24/10/2024 17:11, Ing. Marie Švancarová
Abstract
V originále
Background. Extensive genome rearrangements, known as chromothripsis, have been recently identified in several cancer types. Chromothripsis leads to complex structural variants (cSVs) causing aberrant gene expression and the formation of de novo fusion genes, which can trigger cancer development, or worsen its clinical course. The functional impact of cSVs can be studied at the RNA level using whole transcriptome sequencing (total RNA-Seq). It represents a powerful tool for discovering, profiling, and quantifying changes of gene expression in the overall genomic context. However, bioinformatic analysis of transcriptomic data, especially in cases with cSVs, is a complex and challenging task, and the development of proper bioinformatic tools for transcriptome studies is necessary. Methods. We designed a bioinformatic workflow for the analysis of total RNA-Seq data consisting of two separate parts (pipelines): The first pipeline incorporates a statistical solution for differential gene expression analysis in a biologically heterogeneous sample set. We utilized results from transcriptomic arrays which were carried out in parallel to increase the precision of the analysis. The second pipeline is used for the identification of de novo fusion genes. Special attention was given to the filtering of false positives (FPs), which was achieved through consensus fusion calling with several fusion gene callers. We applied the workflow to the data obtained from ten patients with chronic lymphocytic leukemia (CLL) to describe the consequences of their cSVs in detail. The fusion genes identified by our pipeline were correlated with genomic break-points detected by genomic arrays. Results. We set up a novel solution for differential gene expression analysis of individual samples and de novo fusion gene detection from total RNA-Seq data. The results of the differential gene expression analysis were concordant with results obtained by transcriptomic arrays, which demonstrates the analytical capabilities of our method. We also showed that the consensus fusion gene detection approach was able to identify true positives (TPs) efficiently. Detected coordinates of fusion gene junctions were in concordance with genomic breakpoints assessed using genomic arrays. Discussion. By applying our methods to real clinical samples, we proved that our approach for total RNA-Seq data analysis generates results consistent with other genomic analytical techniques. The data obtained by our analyses provided clues for the study of the biological consequences of cSVs with far-reaching implications for clinical outcome and management of cancer patients. The bioinformatic workflow is also widely applicable for addressing other research questions in different contexts, for which transcriptomic data are generated.
Links
LM2015091, research and development project |
| ||
MUNI/A/1105/2018, interní kód MU |
| ||
NV15-31834A, research and development project |
| ||
90091, large research infrastructures |
|