Detailed Information on Publication Record
2019
Deciding Fast Termination for Probabilistic VASS with Nondeterminism
BRÁZDIL, Tomáš, Krishnendu CHATTERJEE, Antonín KUČERA, Petr NOVOTNÝ, Dominik VELAN et. al.Basic information
Original name
Deciding Fast Termination for Probabilistic VASS with Nondeterminism
Authors
BRÁZDIL, Tomáš (203 Czech Republic, belonging to the institution), Krishnendu CHATTERJEE (356 India), Antonín KUČERA (203 Czech Republic, belonging to the institution), Petr NOVOTNÝ (203 Czech Republic, guarantor, belonging to the institution) and Dominik VELAN (203 Czech Republic, belonging to the institution)
Edition
Cham, Automated Technology for Verification and Analysis - 17th International Symposium, ATVA 2019, Proceedings, p. 462-478, 17 pp. 2019
Publisher
Springer
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10200 1.2 Computer and information sciences
Country of publisher
Switzerland
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
References:
Impact factor
Impact factor: 0.402 in 2005
RIV identification code
RIV/00216224:14330/19:00107764
Organization unit
Faculty of Informatics
ISBN
978-3-030-31783-6
ISSN
UT WoS
000723515700027
Keywords in English
angelic and demonic nondeterminism; termination time; probabilistic VASS
Tags
Tags
International impact, Reviewed
Změněno: 17/4/2020 12:21, doc. RNDr. Petr Novotný, Ph.D.
V originále
A probabilistic vector addition system with states (pVASS) is a finite state Markov process augmented with non-negative integer counters that can be incremented or decremented during each state transition, blocking any behaviour that would cause a counter to decrease below zero. The pVASS can be used as abstractions of probabilistic programs with many decidable properties. The use of pVASS as abstractions requires the presence of nondeterminism in the model. In this paper, we develop techniques for checking fast termination of pVASS with nondeterminism. That is, for every initial configuration of size n, we consider the worst expected number of transitions needed to reach a configuration with some counter negative (the expected termination time). We show that the problem whether the asymptotic expected termination time is linear is decidable in polynomial time for a certain natural class of pVASS with nondeterminism. Furthermore, we show the following dichotomy: if the asymptotic expected termination time is not linear, then it is at least quadratic, i.e., in Omega(n^2).
In Czech
V článku je studována problematika asymptotického odhadu očekávané doby terminace daného VASS systému obohaceného o stochastické stavy.
Links
GA18-11193S, research and development project |
| ||
GA19-15134Y, interní kód MU |
| ||
GJ19-15134Y, research and development project |
| ||
MUNI/A/1018/2018, interní kód MU |
| ||
MUNI/A/1040/2018, interní kód MU |
|